版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P到两个定点F1、F2的距离之和等于常(|PF1|+|尸尸2卜2a>F1Fj),这个动点P的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若(|PF1|+|尸「卜F1Fj),则动点P的轨迹为线段F1F2;若(|PF1|+|PF2k|F1Fj),则动点P的轨迹无图形.知识点二:椭圆的标准方程.当焦点在工轴上时,椭圆的标准方程:
X2 V2 一、… ,一+—=1(a>b>0),其中c2=a2—b2a2 b2.当焦点在V轴上时,椭圆的标准方程:
V2 X2—+一=1(a>b>0),其中c2=a2—b2;a2 b2Ix=acos①.椭圆的参数方程Iv-bsin①(分为参蜘注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;.在椭圆的两种标准方程中,都有(a>b>0)和c2=a2-b2;.椭圆的焦点总在长轴上.当焦点在X轴上时,椭圆的焦点坐标为(c,0),(-c,0);当焦点在V轴上时,椭圆的焦点坐标为(0,c),(0,-c)知识点三:椭圆的简单几何性质X2V2椭圆:a?+b=1(a>b>0)的简单几何性质X2V2(1)对称性:对于椭圆标准方程一十二=1(a>b>0):说明:把X换成-X、或把v换成-v、a2b2X2V2或把X、V同时换成-X、-V、原方程都不变,所以椭圆一+4=1是以X轴、V轴为对称轴a2b2的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线%=土a和y=土b所围成的矩形内,所以椭圆上点的坐标满足卜|<a,y|<b。(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。x2 y2」 ,②椭圆一+-1(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为a2b2BBA1(-a,0),A2(a,0),BJ0,—b),B2(0,b)BB③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,别叫做椭圆的长半轴长和短半轴长。2c用e表示,记作2c用e表示,记作e—L①椭圆的焦距与长轴长度的比叫做椭圆的离心率,2aa②因为(a>c>0),所以e的取值范围是(0<e<1)。e越接近1,则c就越接近a,从而b=、a2-c2越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这x2V2注意:椭圆一+1=x2V2注意:椭圆一+1=1的图像中线段的几何特征(如下图):a2b2(1)(|PF1+PF2PFiPMiPF——2—=e;PM22a2(PM+PM =——);1 2 。(lBF1=BF2(lBF1=BF2OF2⑶ A1F1=A2F2AF12a-c<PF1<a+c;知识点四:椭圆第二定义一动点到定点的距离和它到一条定直线的距离的比是一个(0,1)内常数e,那么这个点的轨迹叫做椭圆•其中定点叫做焦点,定直线叫做准线,常数e就是离心率・左准线l左准线l:x=1a2右准线12:X=-知识点五:椭圆的焦半径公式:(左焦半径"二a(左焦半径"二a+ex0(右焦半径)「a-ex0其中e是离心率.焦点在y轴上的椭圆的焦半径公式:[IMFI=a+ey1|MJ|=a-ey0(其中Ff2分别是椭圆的下上焦点)*知识点六:直线与椭圆问题(韦达定理的运用)弦长公式:若直线1:y=—b与圆锥曲线相交与A、B两点,A(x1,y1),B(X2,y2)则弦长|AB|=弦长|AB|=■式x1-x2)2+(y1-y2)2-x)2+(kx-kx)2=J1+k2x-x=<1+k2、;'(x+x)2-4xx一 一 X2知识点七:椭圆一+a2y2 y2x2一, . ..〜1与—+—=1(a>b>0)的区别和联系b2 a2b2标准方程上+工=1(a>b>0)a2 b2y2 x2 r—+——二1a2 b2(a>b>0)r|一21焉A图形焦点F1(-c,0),FJc,0)F1(0,-c),FJ0,c)焦距FF2=2cFF2=2c范围x<a,y<bx<b,y<a对称性关于x轴、y轴和原点对称顶点(土a,0),(0,土b)(0,±a),(±b,0)性质轴长长轴长=2a,短轴长=2b离心率e=c(0<e<1)a准线方程X=±9y=±a2焦半径PF=a+ex,PF=a-exPF=a+ey,PF=a-ey注意:…一X2 y2椭圆一十—二a2 b2一y2 x2 一,,=1,—+—=1(a>b>0)的相同点a2 b2:形状、大小都相同;参数间的关系都有(a>b>0)和e=c(0<e<1),a2=b2+c2;不同点:两种椭圆的位置不同;它们的焦点a坐标也不相同。规律方法:.如何确定椭圆的标准方程?任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。确定一个椭圆的标准方程需要三个条件:两个定形条件。,b;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。.椭圆标准方程中的三个量a,b,c的几何意义椭圆标准方程中,a,b,c三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:(a>b>0),(a>c>0),且(a2=b2+c2)。 受:可借助右图理解记忆:显然:a,b,c恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条一"&Q ;直角边。.如何由椭圆标准方程判断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:春2,y2的分母的大小,哪个分母大,焦点就在哪个坐标轴上。.方程Ax2+By2=C(A,B,C均不为零)是表示椭圆的条件TOC\o"1-5"\h\zAx2By2rx2By2」~ ―一方程Ax2+By2=C可化为一丁+——=1,即-C+*=1,所以只有A、B、C同号,且\o"CurrentDocument"C C C CABCC CCA丰B时,方程表示椭圆。当;>羊时,椭圆的焦点在x轴上;当:<”时,椭圆的焦点在y轴AB AB上。.求椭圆标准方程的常用方法:①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数a,b,c的值。其主要步骤是“先定型,再定量”;②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。.共焦点的椭圆标准方程形式上的差异x2 y2共焦点,则c相同。与椭圆一十4=1(a>b>0)共焦点的椭圆方程可设为a2b2x2 y2 一,.、 +——=1(m>-b2),此类问题常用待定系数法求解。a2+mb2+m
.判断曲线关于x轴、y轴、原点对称的依据:①若把曲线方程中的x换成-x,方程不变,则曲线关于y轴对称;②若把曲线方程中的y换成-y,方程不变,则曲线关于x轴对称;③若把曲线方程中的x、y同时换成-x、-y,方程不变,则曲线关于原点对称。.如何求解与焦点三角形△「£?;(P为椭圆上的点)有关的计算问题?思路分析:与焦点三角形△PF1F2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式S =1PF|xP^F卜sin/FPF相结合的方法进行计算解题。呼F2 2I1 1 21 12将有关线段P^F、PF、FF|,有关角/FPF(/FPF</FBF)结合起来,建立1 1 2 12 1 2 1 2 1 2|PFJ+|PFJ、|PFjx|PF2|之间的关系..如何计算椭圆的扁圆程度与离心率的关系?长轴与短轴的长短关系决定椭圆形状的变化。离心率e=-(0<e<1),因为c2=a2-b2,aa>c>0,用a、b表示为e=1-(-)2(0<e<1)。aTOC\o"1-5"\h\zb..b b..显然:当一越小时,e(0<e<1)越大,椭圆形状越扁;当一越大,e(0<e<1)越小,椭圆形状a a越趋近于圆。经典例题:一、椭圆的定义例1、已知F1(-8,0),F2(8,0),动点P满足IPFJ+IPF2I=16,则点P的轨迹为( )A圆 B椭圆C线段D直线x2x2y2例2、椭圆——~—=1左右焦点为FrF2,16 9 12CD为过F1的弦,则力CDF2的周长为二、椭圆的标准方程例3、y例3、y21-k=1表示椭圆,则k的取值范围是(A-1<k<1 Bk>0 CkN0 Dk>1或k<-1例4、已知方程+2-+上-=1,表示焦点在y轴上的椭圆,则m的取值范围为 m-12-m例5、求满足以下条件的椭圆的标准方程(1)长轴长为10,短轴长为6(2)长轴是短轴的2倍,且过点(2,1)(3)经过点(5,1),(3,2)例6、若力ABC顶点B、C坐标分别为(-4,0),(4,0),AC、AB边上的中线长之和为30,求力ABC的重心6的轨迹方程。例7、已知动圆P过定点A(-3,0),且在定圆B:(x-3)+山=64的内部与其相内切,求动圆圆心P的轨迹方程.例8、已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为七和三一,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.三、离心率x2y2例9、椭圆瓦-'=1(a>b>0)的左右焦点分别是F1、F2,过点F1作x轴的垂线交椭圆于P点。若NF]PF2=60°,则椭圆的离心率为例10、已知正方形人:^口,则以A、B为焦点,且过C、D两点的椭圆的的离心率为 X2V2一 _例11、椭圆一十j=1(a>b>0)与x轴正向交于点A,若这个椭圆上总存在点。,使a2b2OP1AP(O为坐标原点),求其离心率e的取值范围.四、最值问题x2例12、椭圆丁+y2=1两焦点为F「月,点p在椭圆上,则ipfJ-ipfj的最大值为 ,最小1 2 1 2值为 x2例14、已知椭圆彳+y2=1,A(1,0),P为椭圆上任意一点,求ipai的最大值和最小值。六、直线和椭圆X2y2例16、已知直线l:y=2x+m,椭圆C:—+彳=1,试问当m为何值时:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.x2一例17、已知斜率为1的直线l经过椭圆丁+y2=1的右焦点,交椭圆于A、B两点,求弦AB的4长.例18、已知椭圆4x2+y2=1及直线y=x+m.(1)当m为何值时,直线与椭圆有公共点? 2.10(2)若直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度砂石场废水处理合同2篇
- 7 请到我的家乡来 第一课时 教学实录-2023-2024学年道德与法治三年级下册统编版
- 云南省曲靖市2024-2025学年高三数学下学期2月月考试题含解析
- (2024年秋季版)黑龙江省七年级道德与法治下册 第二单元 做情绪情感的主人 第四课 揭开情绪的面纱 第1框 青春的情绪教学实录 新人教版
- 2024年度危险废物处理与安全处置合同2篇
- 陇东学院《信息技术教学设计》2023-2024学年第一学期期末试卷
- 2024年班组劳动安全生产协议2篇
- 2024年标准施工用围挡采购合同模板版B版
- 2024年度免租金租赁房产合同范本2篇
- 2024年度太阳能发电站施工合同
- 2024年新苏教版科学六年级上册全册背诵专用知识点
- 电机扭矩与丝杆推力关系(自动计算)
- AQ 1066-2008 煤层瓦斯含量井下直接测定方法(正式版)
- 幕墙预埋件合同范本
- 电梯安全总监和安全员的任命文件
- SL-T+62-2020水工建筑物水泥灌浆施工技术规范
- NB-T35064-2015水电工程安全鉴定规程
- GB 1499.2-2024钢筋混凝土用钢第2部分:热轧带肋钢筋
- 线性规划完整版本
- 科普知识·蚂蚁的家族
- 药店药品管理制度及规范
评论
0/150
提交评论