




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.抛物线上部分点的横坐标、纵坐标的对应值如下表:…-3-2-101……-60466…容易看出,是它与轴的一个交点,那么它与轴的另一个交点的坐标为()A. B. C. D.2.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中()A.甲的结果正确 B.乙的结果正确C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小3.如图,已知扇形BOD,DE⊥OB于点E,若ED=OE=2,则阴影部分面积为()A. B. C. D.4.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A. B.2 C.5 D.105.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.6.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点O B.点P C.点M D.点N7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是:A.5米 B.6米 C.6.5米 D.7米8.已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正确的是A.①②③ B.②③④ C.①③④ D.①②④9.如图,在中,,,垂足为点,如果,,那么的长是()A.4 B.6 C. D.10.如图,在正方形网格中,每个小正方形的边长是个单位长度,以点为位似中心,在网格中画,使与位似,且与的位似比为,则点的坐标可以为()A. B. C. D.11.抛物线的开口方向是()A.向下 B.向上 C.向左 D.向右12.在同一坐标系中一次函数和二次函数的图象可能为()A. B. C. D.二、填空题(每题4分,共24分)13.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球_____个.14.已知关于x的方程的一个根为2,则这个方程的另一个根是▲.15.若、为关于x的方程(m≠0)的两个实数根,则的值为________.16.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为.17.如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=_____.18.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.三、解答题(共78分)19.(8分)计算:cos30°•tan60°+4sin30°.20.(8分)如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点.连接,且.(1)求的值;(2)过点作,交反比例函数(其中)的图象于点,连接交于点,求的值.21.(8分)如图,直线与双曲线在第一象限内交于两点,已知.求的值及直线的解析式;根据函数图象,直接写出不等式的解集.22.(10分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.23.(10分)已知关于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有实数根,求m的取值范围.(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.24.(10分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y(℃)与开机时间x(分)成反比例关系,当水温降至20C时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明上午八点将饮水机在通电开机(此时饮水机中原有水的温度为20℃后即外出散步,预计上午八点半散步回到家中,回到家时,他能喝到饮水机内不低于30℃的水吗?请说明你的理由.25.(12分)已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.(l)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.26.如图,在中,,点是边上的动点(不与重合),点在边上,并且满足.(1)求证:;(2)若的长为,请用含的代数式表示的长;(3)当(2)中的最短时,求的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据(0,6)、(1,6)两点求得对称轴,再利用对称性解答即可.【详解】∵抛物线经过(0,6)、(1,6)两点,∴对称轴x==;点(−2,0)关于对称轴对称点为(3,0),因此它与x轴的另一个交点的坐标为(3,0).故选C.【点睛】本题考查了二次函数的对称性,解题的关键是求出其对称轴.2、B【分析】设PD=x,AB边上的高为h,求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在中,∵,∴,设,边上的高为,则.∵,∴,∴,∴,∴,∴当时,的值随的增大而减小,当时,的值随的增大而增大,∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.3、B【分析】由题意可得△ODE为等腰直角三角形,可得出扇形圆心角为45°,再根据扇形和三角形的面积公式即可得到结论.【详解】解:∵DE⊥OB,OE=DE=2,
∴△ODE为等腰直角三角形,∴∠O=45°,OD=OE=2.∴S阴影部分=S扇形BOD-S△OED=
故答案为:B.【点睛】本题考查的是扇形面积计算、等腰直角三角形的性质,利用转化法求阴影部分的面积是解题的关键.4、C【解析】分析:根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故选C.点睛:本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.5、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.6、B【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【详解】解:位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心(如图)在M、N所在的直线上,点P在直线MN上,所以点P为位似中心.
故选:B.【点睛】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.7、A【分析】在,直接根据正弦的定义求解即可.【详解】如图:AB=13,作BC⊥AC,∵∴.故小车上升了5米,选A.【点睛】本题考查解直角三角形的应用-坡度坡角问题.解决本题的关键是将实际问题转化为数学问题,构造,在中解决问题.8、D【分析】利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出△BMF的面积即可【详解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正确∵BC=CD=AD=4,EC=1∴DE=3,设BF=x,则EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正确,③错误,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正确,故选D.【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题9、C【分析】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【详解】∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠A+∠ACD=90°,
∴∠A=∠BCD,又∠ADC=∠CDB,
∴△ADC∽△CDB,
∴,,
∴,即,
解得,CD=6,
∴,
解得,BD=4,
∴BC=,
故选:C.【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.10、B【解析】利用位似性质和网格特点,延长CA到A1,使CA1=2CA,延长CB到B1,使CB1=2CB,则△A1B1C1满足条件;或延长AC到A1,使CA1=2CA,延长BC到B1,使CB1=2CB,则△A1B1C1也满足条件,然后写出点B1的坐标.【详解】解:由图可知,点B的坐标为(3,-2),
如图,以点C为位似中心,在网格中画△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,
则点B1的坐标为(4,0)或(-8,0),位于题目图中网格点内的是(4,0),
故选:B.【点睛】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的位似比画出图形,注意有两种情况.11、B【分析】抛物线的开口方向由抛物线的解析式y=ax2+bx+c(a≠0)的二次项系数a的符号决定,据此进行判断即可.【详解】解:∵y=2x2的二次项系数a=2>0,
∴抛物线y=2x2的开口方向是向上;
故选:B.【点睛】本题考查了二次函数图象的开口方向.二次函数y=ax2+bx+c(a≠0)的图象的开口方向:当a<0时,开口方向向下;当a>0时,开口方向向上.12、A【详解】根据二次函数的解析式可得:二次函数图像经过坐标原点,则排除B和C,A选项中一次函数a>0,b<0,二次函数a>0,b<0,符合题意.故选A.【点睛】本题考查了(1)、一次函数的图像;(2)、二次函数的图像二、填空题(每题4分,共24分)13、1【解析】解:设红球有n个由题意得:,解得:n=1.故答案为=1.14、-1.【解析】∵方程的一个根为2,设另一个为a,∴2a=-6,解得:a=-1.15、-2【分析】根据根与系数的关系,,代入化简后的式子计算即可.【详解】∵,,∴,故答案为:【点睛】本题主要考查一元二次方程ax2+bx+c=0的根与系数关系,熟记:两根之和是,两根之积是,是解题的关键.16、9.6【解析】试题分析:设树的高度为x米,根据在同一时刻物高与影长成比例,即可列出比例式求解.设树的高度为x米,由题意得解得则树的高度为9.6米.考点:本题考查的是比例式的应用点评:解答本题的关键是读懂题意,准确理解在同一时刻物高与影长成比例,正确列出比例式.17、35°【分析】先根据三角形外角性质求出∠C的度数,然后根据圆周角定理得到∠B的度数.【详解】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案为35°.【点睛】本题主要考查的是三角形的外角性质以及圆周角定理,这是一道综合性几何题,掌握三角形的外角性质以及圆周角定理是解题关键.18、1:1.【解析】根据位似变换的性质定义得到四边形ABCD与四边形A′B′C′D′相似,根据相似多边形的性质计算即可.【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′相似,相似比为1:2,∴四边形ABCD与四边形A′B′C′D′的面积比是1:1,故答案为:1:1.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.三、解答题(共78分)19、.【分析】将特殊角的三角函数值代入求解.【详解】原式=×+4×,=+2,=.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20、(1)12;(2).【分析】(1)过点A作AH⊥x轴,垂足为点H,求出点A的坐标,即可求出k值;
(2)求出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值,进而求出AD的长.【详解】解:(1)过点作轴,垂足为点交于点,如图所示,,点的坐标为.为反比例函数图象上的一点,.(2)轴,,点在反比例函数上,,,∴.【点睛】本题考查了反比例函数与几何图形的综合题,涉及等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是求出相关点的坐标转化为线段的长度,再利用几何图形的性质求解.21、(1),;(2)或.【分析】⑴将点A(1,m)B(2,1)代入y2得出k2,m;再将A,B坐标代入y1中,求出即可;⑵直接根据函数图像写出答案即可.【详解】解:点在双曲线上,双曲线的解析式为在双曲线上,,直线过两点,,解得,直线的解析式为.根据函数图象可知,不等式的解集为或.【点睛】此题主要考查了一次函数与反比例函数交点问题,已知一个交点坐标先求出反比例函数的解析式是解题的关键.22、(1)见解析;(2).【分析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;
(2)利用勾股定理列式求出BE,再求出DE,然后根据相似三角形对应边成比例列式求解即可.【详解】(1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥BE,
∴∠2+∠3=180°-90°=90°,
∴∠1=∠3,
又∵∠A=∠D=90°,
∴△ABE∽△DEF;
(2)∵AB=3,AE=4,
∴BE==5,
∵AD=6,AE=4,
∴DE=AD-AE=6-4=2,
∵△ABE∽△DEF,
∴,即,
解得EF=.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,利用同角的余角相等求出相等的锐角是证明三角形相似的关键.23、(1)m≥;(2)m=3【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m﹣2≠0时,△=1+8(m﹣2)≥0,∴m≥且m≠2,当m﹣2=0时,x﹣2=0,符合题意,综上所述,m≥(2)由根与系数的关系可知:x1+x2=,x1x2=,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴+=5,∴=1或=﹣5,∴m=3或m=(舍去).【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.24、(1)y=10x+1;(2)t的值为2;(3)不能,理由见解析【分析】(1)根据一次函数图象上两点的坐标,利用待定系数法即可求出当0≤x≤8时,水温y(℃)与开机时间x(分)的函数关系式;(2)由点(8,100),利用待定系数法即可求出当8≤x≤t时,水温y(℃)与开机时间x(分)的函数关系式,再将y=1代入该函数关系式中求出x值即可;(3)将x=30代入反比例函数关系式中求出y值,再与30比较后即可得出结论.【详解】(1)当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系式为y=kx+b(k≠0).将(0,1)、(8,100)代入y=kx+b中,得:,解得:,∴当0≤x≤8时,水温y(℃)与开机时间x(分)的函数关系式为y=10x+1.(2)当8≤x≤t时,设水温y(℃)与开机时间x(分)的函数关系式为y(m≠0),将(8,100)代入y中,得:100,解得:m=800,∴当8≤x≤t时,水温y(℃)与开机时间x(分)的函数关系式为y.当y1时,x=2,∴图中t的值为2.(3)当x=30时,.答:小明上午八点半散步回到家中时,不能喝到饮水机内不低于30°C的水.【点睛】本题考查了一次函数的应用、待定系数法求一次(反比例)函数解析式以及一次(反比例)函数图象上点的坐标特征,解答本题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)根据点的坐标,利用待定系数法求出反比例函数关系式;(3)将x=30代入反比例函数关系式中,求出y值.25、(1)反比例函数解析式为y=,一次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同履行担保管理办法
- 基础设施建设临时用地合同范本
- 跨境融资合同(样式一)
- 6 有多少浪费本可避免 第2课时 (教学设计)2023-2024学年统编版道德与法治四年级下册
- 14《我要的是葫芦》教学设计-2024-2025学年统编版(五四制)语文二年级上册
- 4田家四季歌教学设计-2024-2025学年二年级上册语文统编版
- 建筑安装工程承包合同
- 雇工植树合同范本
- 6《9的乘法口诀》(教学设计)-2024-2025学年二年级上册数学人教版
- Module 3 Unit 9 Great cities of the world(教学设计)-2024-2025学年沪教牛津版(深圳用)英语六年级上册
- 西师版六年级下册数学课件(全册)
- 减数分裂和受精作用(第二课时)课件-高一下学期生物人教版必修2
- 房地产标准踩盘表格模板
- 塑胶件承认书
- 物联网项目实施进度计划表
- 学校校园安全巡逻情况登记表
- DLT5210.4-2018热工施工质量验收表格
- 中国-各省市地图可编辑课件
- (儿科学课件)肾病综合征
- 光缆线路工程段终版施工图
- 矿井年度灾害预防和处理计划
评论
0/150
提交评论