下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题2.若函数有两个极值点,则实数的取值范围是()A. B. C. D.3.若的内角满足,则的值为()A. B. C. D.4.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.5.已知函数满足,且,则不等式的解集为()A. B. C. D.6.要得到函数的图像,只需把函数的图像()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位7.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数8.已知向量,是单位向量,若,则()A. B. C. D.9.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.10.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A. B. C. D.11.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数12.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间二、填空题:本题共4小题,每小题5分,共20分。13.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.14.已知集合,则____________.15.设,分别是定义在上的奇函数和偶函数,且,则_________16.在的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.18.(12分)已知数列和,前项和为,且,是各项均为正数的等比数列,且,.(1)求数列和的通项公式;(2)求数列的前项和.19.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.20.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.21.(12分)已知函数.(Ⅰ)求的值;(Ⅱ)若,且,求的值.22.(10分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2023年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.【题目详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【答案点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.2、A【答案解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.3、A【答案解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.【题目详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【答案点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.4、A【答案解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【题目详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【答案点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.5、B【答案解析】
构造函数,利用导数研究函数的单调性,即可得到结论.【题目详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【答案点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.6、A【答案解析】
运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【题目详解】解:.对于A:可得.故选:A.【答案点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.7、C【答案解析】
根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【题目详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【答案点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.8、C【答案解析】
设,根据题意求出的值,代入向量夹角公式,即可得答案;【题目详解】设,,是单位向量,,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.【答案点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.9、C【答案解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【题目详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【答案点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.10、B【答案解析】命题p:,为,又为真命题的充分不必要条件为,故11、C【答案解析】
根据函数奇偶性的性质即可得到结论.【题目详解】解:是奇函数,是偶函数,,,,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确.为偶函数,故错误,故选:.【答案点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.12、D【答案解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【题目详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【答案点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题二、填空题:本题共4小题,每小题5分,共20分。13、1055【答案解析】
模拟执行程序框图中的程序,即可求得结果.【题目详解】模拟执行程序如下:,满足,,满足,,满足,,满足,,不满足,输出.故答案为:1055.【答案点睛】本题考查程序框图的模拟执行,属基础题.14、【答案解析】
根据并集的定义计算即可.【题目详解】由集合的并集,知.故答案为:【答案点睛】本题考查集合的并集运算,属于容易题.15、1【答案解析】
令,结合函数的奇偶性,求得,即可求解的值,得到答案.【题目详解】由题意,函数分别是上的奇函数和偶函数,且,令,可得,所以.故答案为:1.【答案点睛】本题主要考查了函数奇偶性的应用,其中解答中熟记函数的奇偶性,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、【答案解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.【题目详解】的展开式中,所求项为:,的系数为.
故答案为:.【答案点睛】本题考查二项展开式定理的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【答案解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【题目详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),,因为,,所以要证,只需证,即证,因为,所以只要证,即证,即证,因为,所以只需证,因为,所以成立,所以.【答案点睛】本小题主要考查绝对值不等式的解法,考查分析法证明不等式,考查基本不等式的运用,属于中档题.18、(1),;(2).【答案解析】
(1)令求出的值,然后由,得出,然后检验是否符合在时的表达式,即可得出数列的通项公式,并设数列的公比为,根据题意列出和的方程组,解出这两个量,然后利用等比数列的通项公式可求出;(2)求出数列的前项和,然后利用分组求和法可求出.【题目详解】(1)当时,,当时,.也适合上式,所以,.设数列的公比为,则,由,两式相除得,,解得,,;(2)设数列的前项和为,则,.【答案点睛】本题考查利用求,同时也考查了等比数列通项的计算,以及分组求和法的应用,考查计算能力,属于中等题.19、(1)证明见解析;(2).【答案解析】
(1)取中点,连接,,证明平面,由线面垂直的性质可得;(2)由,即可求得三棱锥的体积.【题目详解】解:(1)证明:取中点D,连接,.因为,,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.【答案点睛】本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.20、直线与圆C相切.【答案解析】
首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系.【题目详解】直线为参数),转换为直角坐标方程为.圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离.直线与圆C相切.【答案点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.21、(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)直接代入再由诱导公式计算可得;(Ⅱ)先得到,再根据利用两角差的余弦公式计算可得.【题目详解】解:(Ⅰ);(Ⅱ)因为所以,由得,又因为,故,所以,所以.【答案点睛】本题考查了三角函数中的恒等变换应用,属于中档题.22、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【答案解析】
(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【大学课件】模拟电子技术实验前导
- 2025届福建省三明市普通高中高三下学期一模考试英语试题含解析
- 陕西省西安市高新一中2025届高三最后一模英语试题含解析
- 云南省西畴县第二中学2025届高三第二次模拟考试英语试卷含解析
- 2025届重庆市南坪中学高三最后一模数学试题含解析
- 9.1《念奴娇•赤壁怀古》课件 2024-2025学年统编版高中语文必修上册
- 河南省三门峡市2025届高三六校第一次联考数学试卷含解析
- 2025届新疆阿勒泰第二高级中学高考适应性考试数学试卷含解析
- 《solidworks 机械设计实例教程》 课件 任务3.1 法兰盘的设计
- 2025届山东省济南市山东师范大学附中高考英语倒计时模拟卷含解析
- 工程项目管理流程图
- 表箱技术规范
- 二氧化碳充装操作规程完整
- 【全册】最新部编人教版三年级道德与法治上册知识点总结
- 植草沟施工方案
- 苯-甲苯浮阀塔精馏课程设计.doc
- 环保-TVOC监测标准方案
- 专题04 《鱼我所欲也》三年中考真题(解析版)-备战2022年中考语文课内文言文知识点梳理+三年真题训练(部编版)
- 港股通知识测试2016
- 煤矿井下集中大巷皮带机安装施工组织设计及措施
- (完整版)渠道混凝土施工方案
评论
0/150
提交评论