版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArchitectureandEquilibra
结构和平衡
刘瑞华罗雪梅
导师:曾平Chapter6
2004.11.101Chapter6ArchitectureandEquilibriaPerface
lyaoynovstabletheorem2004.11.102Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystemClassifyNeutralnetworkmodelBytheirsynapticconnectiontopolgiesandbyhowlearningmodifiestheirconnectiontopologies
synapticconnectiontopolgieshowlearningmodifiestheirconnectiontopologies2004.11.103Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystem2004.11.104Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystemThreestochasticgradientsystemsrepresentthethreemaincategories:1)Feedforwardsupervisedneuralnetworkstrainedwiththebackpropagation(BP)algorithm.2)Feedforwardunsupervisedcompetitivelearningoradaptivevectorquantization(AVQ)networks.3)Feedbackunsupervisedrandomadaptivebidirectionalassociativememory(RABAM)networks.2004.11.105Chapter6ArchitectureandEquilibria
6.2GlobalEquilibra:convergenceandstabilityNeuralnetwork:synapses,neuronsthreedynamicalsystems:synapsesdynamicalsystems
neuonsdynamicalsystemsjointsynapses-neuronsdynamicalsystemsHistorically,Neuralengineersstudythefirstorsecondneuralnetwork.Theyusuallystudylearningin
feedforwardneuralnetworksandneuralstabilityinnonadaptivefeedbackneuralnetworks.RABAMandARTnetworkdependonjointequilibrationofthesynapticandneuronaldynamicalsystems.2004.11.106Chapter6ArchitectureandEquilibria
6.2GlobalEquilibra:convergenceandstabilityEquilibriumissteadystate.Convergenceissynapticequilibrium.Stabilityisneuronalequilibrium.Moregenerallyneuralsignalsreachsteadystateeventhoughtheactivationsstillchange.WedenotesteadystateintheneuronalfieldNeuronfluctuatefasterthansynapsesfluctuate.Stability-Convergencedilemma:Thesynapsedslowlyencodetheseneuralpatternsbeinglearned;butwhenthesynapsedchange,thistendstoundothestableneuronalpatterns.2004.11.107Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsWeshallprovethat:CompetitveAVQsynapticvectorconvergetopattern-classcentroid.TheyvibrateaboutthecentroidinaBrowmianmotionCompetitvelearningadpatively
qunatizestheinputpatternspace
charcaterizesthecontinuousdistributionsofpattern.2004.11.108Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsTheRandomIndicatorfunction
Supervisedlearningalgorithmsdependexplicitlyontheindicatorfunctions.Unsupervisedlearningalgorthmsdon’trequirethispattern-classinformation.Centriod
ComptetiveAVQStochasticDifferentialEquations2004.11.109Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsTheStochasticunsupervisedcompetitivelearninglaw:WewanttoshowthatatequilibriumWeassumeTheequilibriumandconvergencedependonapproximation(6-11),so6-10reduces:2004.11.1010Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsCompetitiveAVQAlgorithms1.Initializesynapticvectors:2.Forrandomsample,findthecloset(“winning”)synapticvector3.UpdatethewiningsynapticvectorsbytheUCL,SCL,orDCLlearningalgorithm.2004.11.1011Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsUnsupervisedCompetitiveLearning(UCL)definesaslowlydeceasingsequenceoflearningcoefficientSupervisedCompetitiveLearning(SCL)2004.11.1012Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsDifferentialCompetitiveLearning(DCL)denotesthetimechangeofthejthneuron’scompetitivesignal.Inpracticeweonlyusethesignof(6-20)StochasticEquilibriumandConvergenceCompetitivesynapticvectorcovergetodecsion-classcentrols.Maycovergetolocallymaxima.2004.11.1013Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsAVQcentroidtheorem:ifacompetitiveAVQsystemconverges,itconvergetothecentroidofthesampleddecisionclass.Proof.SupposethejthneuroninFywinstheactitvecompetition.SupposethejthsynapticvectorcodesfordecisionclassSupposethesynapticvectorhasreachedequilibrium2004.11.1014Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithms2004.11.1015Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremAVQConvergenceTheorem:Stochasticcompetitivelearningsystemsareasymptoticallystable,andsynapticvectorsconvergetocentroids.Competitivesynapticvectorsconvergeexponentiallyquiklytopattern-classcentroids.Proof.ConsidertherandomquadraticformLThepatternvectorsxdonotchangeintime.2004.11.1016Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremTheaverageE[L]asLyapunovfunctionforthesochastic
competiticedynamicalsystem.Assume:Noiseprocessiszero-meanandindependenceofthenoiseprocesswith“signal”process2004.11.1017Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremSo,onaveragebythelearninglaw6-12,Ifanysynapticvectormovealongitstrajetory.So,thecompetitiveAVQsystemisasymtotically
stabel,andingereralconvergesexponentiallyquicklytoalocallyequilibrium.Suppose
TheneverysynapticvectorhasReachedequilibriumandisconstant.2004.11.1018Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremSincep(x)isanonnegativeweigthfunction.Theweightedintegralofthelearningdifferencemustequalzero:Soequilibriumsynapticvectorequalcentroids.Q.E.D2004.11.1019Chapter6ArchitectureandEquilibria
6.5GlobalstabilityoffeedbackneuralnetworksGlobalstabilityisjointlyneuronal-synapticssteadystate.Globalstabilitytheoremsarepowerfulbutlimited.Theirpower:theirdimensionindependencenonlineargeneralitytheirexponentiallyfastconvergencetofixedpoints.Theirlimitation:donottelluswheretheequilibriaoccurinthestatespace.2004.11.1020Chapter6ArchitectureandEquilibra
6.5GlobalstabilityoffeedbackneuralnetworksStability-ConvergenceDilemmaStability-ConvergenceDilemmaarisefromtheasymmetryinneounalandsynapticfluctuationrates.Neuronschangefasterthansynapseschange.Neuronsfluctuateatthemillisecondlevel.Synapsesfluctuateatthesecondorevenminutelevel.Thefast-changingneuronsmustbalancetheslow-changingsynapses.2004.11.1021Chapter6ArchitectureandEquilibria
6.5GlobalstabilityoffeedbackneuralnetworksStability-ConvergenceDilemma1.Asymmetry:NeuronsinandfluctuatefasterthanthesynapsesinM.2.stability:(patternformation).3.Learning:4.Undoing:theABAMtheoremoffersageneralsolutiontostability-convergencedilemma.2004.11.1022Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremTheABAMTheorem(Adaptive
bidirectionalassociativememory)TheHebbianABAMandcompetitiveABAMmodelsaregloballystabel.HebbianABAMmodel:CompetitiveABAMmodel,replacing6-35with6-362004.11.1023Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremIfthepositivityassumptionsThen,themodelsareasymptoticallystable,andthesquaredactivationandsynapticvelocitiesdecreaseexponentiallyquicklytotheirequilibriumvalues:Proof.
theproofusestheboundedlyapunovfunction
L2004.11.1024Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremMakethedifferenceto6-37:2004.11.1025Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremToproveglobalstabilityforthecompetitvelearninglaw6-36WeprovethestrongerasymptoticstableoftheABAMmodelswiththepositivityassumptions.2004.11.1026Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremAlongtrajectoriesforanynonzerochangeinanyneuronalactivationoranysynapse.Trajectoriesendinequilibriumpoints.Indeed6-43implies:Thesquaredvelocitiesdeceaseexponentiallyquicklybecauseofthestrictnegativityof(6-43)and,toruleoutpathologies.Q.E.D2004.11.1027Chapter6ArchitectureandEquilibria
6.7structuralstabilityofunsuppervisedlearningandRABAMIsunsupervisedlearningstructuralstability?StructuralstabilityisinsensivitytosmallperturbationsStructuralstabilityignoresmanysmallperturbations.Suchperturbationspreservequalitativeproperties.Basinsofattractionsmaintaintheirbasicshape.2004.11.1028Chapter6ArchitectureandEquilibria
6.7StructuralstabilityofunsuppervisedlearningandRABAMRandomAdaptiveBidirectionalAssociativeMemoriesRABAMBrowiandiffusionsperturbRABAMmodel.Thedifferentialequationsin6-33through6-35nowbecomestochasticdifferentialequations,withrandomprocessesassolutions.ThediffusionsignalhebbianlawRABAMmodel:2004.11.1029Chapter6ArchitectureandEquilibria
6.7StructuralstabilityofunsuppervisedlearningandRABAMWiththestochasticcompetitiveslaw:2004.11.1030Chapter6ArchitectureandEquilibria
6.7Structuralstabilityofunsuppervise
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心梗护理病例书写课件
- 2024年公司出借资金给个人协议书2篇
- 2024年度餐饮服务食品采购协议范例版B版
- 区块链与数字货币行业可行性分析报告
- 2024年住宅购买协议9篇
- 2024振宁星光广场商铺租赁合同书合同商铺商户南宁振宁开发有限责任公司
- 2024年合作伙伴招商合同3篇
- 2024年个人云空间租赁合同3篇
- 2024年单边导向陶瓷弹片项目建议书
- 2024棉花买卖合同 标准版模板全
- 2023年合肥东方英才人才有限公司招聘笔试真题
- 2023年贵州贵州习酒股份有限公司招聘笔试真题
- 临期食品安全管理制度
- 护理安全警示教育-新-
- 做自己的中医
- 酒店房屋租赁合同范本(31篇)
- 北京师大附属实验中学2025届高二数学第一学期期末学业水平测试试题含解析
- 浙江省文化产业投资集团招聘笔试题库2024
- 环境感官线索对饮食决策的影响及其机制
- 写作《记述与动物的相处》同步课件 2024-2025学年七年级语文上册(统编版2024)
- 2024年人工智能+教育行业发展研究报告:教无定法AI育才-艾瑞咨询
评论
0/150
提交评论