版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArchitectureandEquilibra
结构和平衡
刘瑞华罗雪梅
导师:曾平Chapter6
2004.11.101Chapter6ArchitectureandEquilibriaPerface
lyaoynovstabletheorem2004.11.102Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystemClassifyNeutralnetworkmodelBytheirsynapticconnectiontopolgiesandbyhowlearningmodifiestheirconnectiontopologies
synapticconnectiontopolgieshowlearningmodifiestheirconnectiontopologies2004.11.103Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystem2004.11.104Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystemThreestochasticgradientsystemsrepresentthethreemaincategories:1)Feedforwardsupervisedneuralnetworkstrainedwiththebackpropagation(BP)algorithm.2)Feedforwardunsupervisedcompetitivelearningoradaptivevectorquantization(AVQ)networks.3)Feedbackunsupervisedrandomadaptivebidirectionalassociativememory(RABAM)networks.2004.11.105Chapter6ArchitectureandEquilibria
6.2GlobalEquilibra:convergenceandstabilityNeuralnetwork:synapses,neuronsthreedynamicalsystems:synapsesdynamicalsystems
neuonsdynamicalsystemsjointsynapses-neuronsdynamicalsystemsHistorically,Neuralengineersstudythefirstorsecondneuralnetwork.Theyusuallystudylearningin
feedforwardneuralnetworksandneuralstabilityinnonadaptivefeedbackneuralnetworks.RABAMandARTnetworkdependonjointequilibrationofthesynapticandneuronaldynamicalsystems.2004.11.106Chapter6ArchitectureandEquilibria
6.2GlobalEquilibra:convergenceandstabilityEquilibriumissteadystate.Convergenceissynapticequilibrium.Stabilityisneuronalequilibrium.Moregenerallyneuralsignalsreachsteadystateeventhoughtheactivationsstillchange.WedenotesteadystateintheneuronalfieldNeuronfluctuatefasterthansynapsesfluctuate.Stability-Convergencedilemma:Thesynapsedslowlyencodetheseneuralpatternsbeinglearned;butwhenthesynapsedchange,thistendstoundothestableneuronalpatterns.2004.11.107Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsWeshallprovethat:CompetitveAVQsynapticvectorconvergetopattern-classcentroid.TheyvibrateaboutthecentroidinaBrowmianmotionCompetitvelearningadpatively
qunatizestheinputpatternspace
charcaterizesthecontinuousdistributionsofpattern.2004.11.108Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsTheRandomIndicatorfunction
Supervisedlearningalgorithmsdependexplicitlyontheindicatorfunctions.Unsupervisedlearningalgorthmsdon’trequirethispattern-classinformation.Centriod
ComptetiveAVQStochasticDifferentialEquations2004.11.109Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsTheStochasticunsupervisedcompetitivelearninglaw:WewanttoshowthatatequilibriumWeassumeTheequilibriumandconvergencedependonapproximation(6-11),so6-10reduces:2004.11.1010Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsCompetitiveAVQAlgorithms1.Initializesynapticvectors:2.Forrandomsample,findthecloset(“winning”)synapticvector3.UpdatethewiningsynapticvectorsbytheUCL,SCL,orDCLlearningalgorithm.2004.11.1011Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsUnsupervisedCompetitiveLearning(UCL)definesaslowlydeceasingsequenceoflearningcoefficientSupervisedCompetitiveLearning(SCL)2004.11.1012Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsDifferentialCompetitiveLearning(DCL)denotesthetimechangeofthejthneuron’scompetitivesignal.Inpracticeweonlyusethesignof(6-20)StochasticEquilibriumandConvergenceCompetitivesynapticvectorcovergetodecsion-classcentrols.Maycovergetolocallymaxima.2004.11.1013Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsAVQcentroidtheorem:ifacompetitiveAVQsystemconverges,itconvergetothecentroidofthesampleddecisionclass.Proof.SupposethejthneuroninFywinstheactitvecompetition.SupposethejthsynapticvectorcodesfordecisionclassSupposethesynapticvectorhasreachedequilibrium2004.11.1014Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithms2004.11.1015Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremAVQConvergenceTheorem:Stochasticcompetitivelearningsystemsareasymptoticallystable,andsynapticvectorsconvergetocentroids.Competitivesynapticvectorsconvergeexponentiallyquiklytopattern-classcentroids.Proof.ConsidertherandomquadraticformLThepatternvectorsxdonotchangeintime.2004.11.1016Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremTheaverageE[L]asLyapunovfunctionforthesochastic
competiticedynamicalsystem.Assume:Noiseprocessiszero-meanandindependenceofthenoiseprocesswith“signal”process2004.11.1017Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremSo,onaveragebythelearninglaw6-12,Ifanysynapticvectormovealongitstrajetory.So,thecompetitiveAVQsystemisasymtotically
stabel,andingereralconvergesexponentiallyquicklytoalocallyequilibrium.Suppose
TheneverysynapticvectorhasReachedequilibriumandisconstant.2004.11.1018Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremSincep(x)isanonnegativeweigthfunction.Theweightedintegralofthelearningdifferencemustequalzero:Soequilibriumsynapticvectorequalcentroids.Q.E.D2004.11.1019Chapter6ArchitectureandEquilibria
6.5GlobalstabilityoffeedbackneuralnetworksGlobalstabilityisjointlyneuronal-synapticssteadystate.Globalstabilitytheoremsarepowerfulbutlimited.Theirpower:theirdimensionindependencenonlineargeneralitytheirexponentiallyfastconvergencetofixedpoints.Theirlimitation:donottelluswheretheequilibriaoccurinthestatespace.2004.11.1020Chapter6ArchitectureandEquilibra
6.5GlobalstabilityoffeedbackneuralnetworksStability-ConvergenceDilemmaStability-ConvergenceDilemmaarisefromtheasymmetryinneounalandsynapticfluctuationrates.Neuronschangefasterthansynapseschange.Neuronsfluctuateatthemillisecondlevel.Synapsesfluctuateatthesecondorevenminutelevel.Thefast-changingneuronsmustbalancetheslow-changingsynapses.2004.11.1021Chapter6ArchitectureandEquilibria
6.5GlobalstabilityoffeedbackneuralnetworksStability-ConvergenceDilemma1.Asymmetry:NeuronsinandfluctuatefasterthanthesynapsesinM.2.stability:(patternformation).3.Learning:4.Undoing:theABAMtheoremoffersageneralsolutiontostability-convergencedilemma.2004.11.1022Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremTheABAMTheorem(Adaptive
bidirectionalassociativememory)TheHebbianABAMandcompetitiveABAMmodelsaregloballystabel.HebbianABAMmodel:CompetitiveABAMmodel,replacing6-35with6-362004.11.1023Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremIfthepositivityassumptionsThen,themodelsareasymptoticallystable,andthesquaredactivationandsynapticvelocitiesdecreaseexponentiallyquicklytotheirequilibriumvalues:Proof.
theproofusestheboundedlyapunovfunction
L2004.11.1024Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremMakethedifferenceto6-37:2004.11.1025Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremToproveglobalstabilityforthecompetitvelearninglaw6-36WeprovethestrongerasymptoticstableoftheABAMmodelswiththepositivityassumptions.2004.11.1026Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremAlongtrajectoriesforanynonzerochangeinanyneuronalactivationoranysynapse.Trajectoriesendinequilibriumpoints.Indeed6-43implies:Thesquaredvelocitiesdeceaseexponentiallyquicklybecauseofthestrictnegativityof(6-43)and,toruleoutpathologies.Q.E.D2004.11.1027Chapter6ArchitectureandEquilibria
6.7structuralstabilityofunsuppervisedlearningandRABAMIsunsupervisedlearningstructuralstability?StructuralstabilityisinsensivitytosmallperturbationsStructuralstabilityignoresmanysmallperturbations.Suchperturbationspreservequalitativeproperties.Basinsofattractionsmaintaintheirbasicshape.2004.11.1028Chapter6ArchitectureandEquilibria
6.7StructuralstabilityofunsuppervisedlearningandRABAMRandomAdaptiveBidirectionalAssociativeMemoriesRABAMBrowiandiffusionsperturbRABAMmodel.Thedifferentialequationsin6-33through6-35nowbecomestochasticdifferentialequations,withrandomprocessesassolutions.ThediffusionsignalhebbianlawRABAMmodel:2004.11.1029Chapter6ArchitectureandEquilibria
6.7StructuralstabilityofunsuppervisedlearningandRABAMWiththestochasticcompetitiveslaw:2004.11.1030Chapter6ArchitectureandEquilibria
6.7Structuralstabilityofunsuppervise
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年安徽体育运动职业技术学院单招综合素质考试备考试题含详细答案解析
- 2026年安徽广播影视职业技术学院单招综合素质笔试参考题库含详细答案解析
- 2026年广西自然资源职业技术学院单招综合素质考试备考题库含详细答案解析
- 2026年宁波职业技术学院单招综合素质考试参考题库含详细答案解析
- 2026年山东现代学院单招综合素质笔试备考试题含详细答案解析
- 2026年桂林电子科技大学单招综合素质考试备考试题含详细答案解析
- 2026年泉州纺织服装职业学院单招综合素质考试备考试题含详细答案解析
- 2026年河南交通职业技术学院单招综合素质笔试参考题库含详细答案解析
- 2026年池州现代报业出版发行有限公司公开招聘印刷操作工1名考试备考试题及答案解析
- 2026年湖北生物科技职业学院单招综合素质考试备考试题含详细答案解析
- 电力电缆敷设与维护规范手册
- 2025至2030中国手术机器人医生培训体系构建与手术收费模式研究报告
- 动环监控系统FSU安装调试操作指南
- 中医养生知识课件
- 2025伊金霍洛旗九泰热力有限责任公司招聘专业技术人员50人公笔试备考试题附答案
- 2026春译林版英语八下-课文课堂笔记
- 2026年苏州卫生职业技术学院单招职业技能测试题库及答案详解1套
- 建材市场安保培训课件
- 柴油供应合同范本
- 外科院感课件
- 2025国家核安保技术中心招聘笔试历年常考点试题专练附带答案详解试卷3套
评论
0/150
提交评论