2023届湖北省襄阳阳光学校数学九年级上册期末综合测试试题含解析_第1页
2023届湖北省襄阳阳光学校数学九年级上册期末综合测试试题含解析_第2页
2023届湖北省襄阳阳光学校数学九年级上册期末综合测试试题含解析_第3页
2023届湖北省襄阳阳光学校数学九年级上册期末综合测试试题含解析_第4页
2023届湖北省襄阳阳光学校数学九年级上册期末综合测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠ACB=90°,AC=3,BC=1.将△ABC绕点A逆时针旋转,使点C的对应点C'在线段AB上.点B'是点B的对应点,连接B'B,则线段B'B的长为()A.2 B.3 C.1 D.2.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为()A. B. C.2 D.43.某校为了了解九年级学生的体能情况,随机抽取了名学生测试1分钟仰卧起坐的次数,统计结果并绘制成如图所示的频数分布直方图.已知该校九年级共有名学生,请据此估计,该校九年级分钟仰卧起坐次数在次之间的学生人数大约是()A. B.C. D.4.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(

)A.35° B.45° C.55° D.65°5.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.6.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大. D.当y增大时,BE·DF的值不变.7.在△ABC中,∠C=Rt∠,AC=6,BC=8,则cosB的值是()A. B. C. D.8.如图,在Rt△ABC中,CD是斜边AB上的中线,若CD=5,AC=6,则tanB的值是()A. B. C. D.9.如图,在△ABC中E、F分别是AB、AC上的点,EF∥BC,且,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.1810.设a,b是方程的两个实数根,则的值为A.2014 B.2015 C.2016 D.201711.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=012.当取何值时,反比例函数的图象的一个分支上满足随的增大而增大()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在矩形中,点为的中点,交于点,连接,下列结论:①;②;③;④若,则.其中正确的结论是______________.(填写所有正确结论的序号)14.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高______15.已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是___.16.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.17.二次函数y=2(x﹣1)2+3的图象的顶点坐标是_________18.若二次函数(为常数)的最大值为3,则的值为________.三、解答题(共78分)19.(8分)近年来,在总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计图对雾霾天气了解程度的统计图对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解请结合统计图表,回答下列问题:(1)本次参与调查的学生共有______人,______;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.20.(8分)已知,如图,点E在平行四边形ABCD的边CD上,且,设,.(1)用、表示;(直接写出答案)(2)设,在答题卷中所给的图上画出的结果.21.(8分)万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该经销商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求的值.22.(10分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:;(2)联结AC,如果,求证:.23.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.24.(10分)如图,在平面直角坐标系中,直线与双曲线相交于A(﹣2,a)、B两点,BC⊥x轴,垂足为C.(1)求双曲线与直线AC的解析式;(2)求△ABC的面积.25.(12分)已知抛物线y=x2﹣2ax+m.(1)当a=2,m=﹣5时,求抛物线的最值;(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.26.如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E.(1)求证:;(2)若,求的值(3)如图2,连接CB并延长,交DA的延长线于点F,若,求的面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】先由勾股定理求出AB,然后由旋转的性质,得到,,得到,即可求出.【详解】解:在△ABC中,∠ACB=90°,AC=3,BC=1.∴,由旋转的性质,得,,,∴,在中,由勾股定理,得;故选:D.【点睛】本题考查了旋转的性质,勾股定理解直角三角形,解题的关键是熟练掌握旋转的性质和勾股定理,正确求出边的长度.2、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性质即可得出△AOE与△BOF的面积之比.【详解】:∵AD∥BC,

∴∠OAE=∠OFB,∠OEA=∠OBF,

∴,∴所以相似比为,∴.故选:D.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.3、B【分析】用样本中次数在30~35次之间的学生人数所占比例乘以九年级总人数可得.【详解】解:该校九年级1分钟仰卧起坐次数在30~35次之间的学生人数大约是×150=25(人),故选:B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.5、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.6、D【解析】试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为,因此,当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=,当y=9时,,即EC=,所以,EC<EM,选项B错误;根据等腰直角三角形的性质,EC=,CF=,即EC·CF=,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.故选D.考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.7、C【分析】利用勾股定理求出AB,根据余弦函数的定义求解即可.【详解】解:如图,在中,,,,,故选:C.【点睛】本题考查解直角三角形,解题的关键是熟练掌握基本知识,属于中考常考题型.8、C【解析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC的长度,然后根据锐角的正切等于对边比邻边解答.【详解】∵CD是斜边AB上的中线,CD=5,

∴AB=2CD=10,

根据勾股定理,BC=tanB=.

故选C.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.9、C【解析】解:∵,∴,∵EF∥BC,∴△AEF∽△ABC,∴,∵△AEF的面积为2,∴S△ABC=18,则S四边形EBCF=S△ABC-S△AEF=18-2=1.故选C.【点睛】本题考查相似三角形的判定与性质,难度不大.10、C【详解】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b=2017﹣1=1.故选C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.也考查了一元二次方程的解.11、D【分析】利用根与系数的关系进行判断即可.【详解】方程1x1+x﹣1=0的两个实数根之和为;方程x1+1x﹣1=0的两个实数根之和为﹣1;方程1x1﹣x﹣1=0的两个实数根之和为;方程x1﹣1x﹣1=0的两个实数根之和为1.故选D.【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1.12、B【解析】根据反比例函数的性质可得:∵的一个分支上y随x的增大而增大,∴a-3<0,

∴a<3.故选B.二、填空题(每题4分,共24分)13、①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB,FE交于点G,根据ASA可证明△AEF≌△BEG,可得AF=BG,EF=EG,进一步即可求得AF、BC与CF的关系,S△CEF与S△EAF+S△CBE的关系,进而可判断②与③;由,结合已知和锐角三角函数的知识可得,进一步即可根据AAS证明结论④;问题即得解决.【详解】解:∵,,∵四边形ABCD是矩形,∴∠B=90°,∴,,所以①正确;延长CB,FE交于点G,如图,在△AEF和△BEG中,∵∠FAE=∠GBE=90°,AE=BE,∠AEF=∠BEG,∴△AEF≌△BEG(ASA),∴AF=BG,EF=EG,∴S△CEG=S△CEF,∵CE⊥EG,∴CG=CF,∴AF+BC=BG+BC=CG=CF,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若,则,,,在和中,∵∠CEF=∠D=90°,,CF=CF,≌,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.14、8m【分析】由题意证△ABO∽△CDO,可得,即,解之可得.【详解】如图,

由题意知∠BAO=∠C=90°,

∵∠AOB=∠COD,

∴△ABO∽△CDO,

∴,即,

解得:CD=8,

故答案为:8m.【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.15、m>1【解析】试题分析:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限.∴m﹣1>0,解得m>1.16、(0,﹣7)【分析】根据题意得出,然后求出y的值,即可以得到与y轴的交点坐标.【详解】令,得,故与y轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y轴的交点坐标问题,掌握与y轴的交点坐标的特点()是解题的关键.17、(1,3)【解析】首先知二次函数的顶点坐标根据顶点式y=a(x+)2+,知顶点坐标是(-,),把已知代入就可求出顶点坐标.【详解】解:y=ax2+bx+c,配方得y=a(x+)2+,顶点坐标是(-,),∵y=2(x-1)2+3,∴二次函数y=2(x-1)2+3的图象的顶点坐标是(1,3).【点睛】解此题的关键是知二次函数y=ax2+bx+c的顶点坐标是(-,),和转化形式y=a(x+)2+,代入即可.18、-1【分析】根据二次函数的最大值公式列出方程计算即可得解.【详解】由题意得,,

整理得,,

解得:,

∵二次函数有最大值,

∴,

∴.

故答案为:.【点睛】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.三、解答题(共78分)19、(1)400,35%;(2)条形统计图见解析;(3)不公平.【分析】(1)用A等级的人数除以它所占的百分比可得调查的总人数,然后用1减去其它等级的百分比即可求得n的值;(3)先计算出D等级的人数,然后补全条形统计图即可;(4)通过树状图可确定12种等可能的结果,再找出和为奇数的结果有8种,再确定出为奇数的概率,再确定小明去和小刚去的概率,最后比较即可解答.【详解】解:(1)由统计图可知:A等级的人数为20,所占的百分比为5%则本次参与调查的学生共有20÷5%=400人;1-5%-15%-45%=35%;(2)由统计图可知:A等级的人数所占的百分比为45%D等级的人数为400×35%=140(人)补全条形统计图如下:(3)根据题意画出树状图如下:可发现共有12种等可能的结果且和为奇数的结果有8种所以小明去的概率为:小刚去的概率为:.由>.所以这个游戏规则不公平.【点睛】本题考查了游戏的公平性,先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,这是解答游戏公平性题目的关键.20、(1);(2)见解析【分析】(1)先表示出,继而可表示出;(2)延长AE、BC交与G即可.【详解】解:(1)四边形是平行四边形,,∵,,;(2)如图,延长AE、BC交与G,则即为所求.四边形是平行四边形,∴AD∥BC,∴,∴,又∵,∴∴.【点睛】本题考查了平面向量及平行四边形的性质,解答本题注意利用平行线分线段成比例的知识,难度一般.21、(1)甲、乙商品的出厂单价分别是90、60元;(2)的值为15.【分析】(1)设甲、乙商品的出厂单价分别是、元,根据价格关系和总价相同建立方程组求解即可;(2)分别表示出实际购进数量和实际单价,利用单价×数量=总价,表示出甲乙的总价,再根据实际总货款与原计划相等建立方程求解.【详解】解:(1)设甲、乙商品的出厂单价分别是、元,则,解得.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:,解得:(舍去),.答:的值为15.【点睛】本题考查二元一次方程组和一元二次方程的应用,熟练掌握等量关系,建立方程是解题的关键.22、(1)见解析;(2)见解析【分析】(1)证明四边形是平行四边形即可解决问题.(2)由,,推出,可得,又与等高,推出,可得结论.【详解】解:(1)四边形是平行四边形,,,,,,,,,,,四边形是平行四边形,,,,.(2)如图:,,,又,,,又∵,.【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23、(1)证明见解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得.(1)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CD﹣CB=CF.②证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,则OC即可求得.【详解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴BD=CF.∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;

理由:∵∠BAC=90°,∠ABC=45°,

∴∠ACB=∠ABC=45°,

∴AB=AC,

∵四边形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,

∴∠BAD=∠CAF,

∵在△BAD和△CAF中,,

∴△BAD≌△CAF(SAS)

∴BD=CF

∴BC+CD=CF,

∴CF-CD=BC;

(3)①∵∠BAC=90°,∠ABC=45°,

∴∠ACB=∠ABC=45°,

∴AB=AC,

∵四边形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,

∴∠BAD=∠CAF,

∵在△BAD和△CAF中,,

∴△BAD≌△CAF(SAS),

∴BD=CF,

∴CD-BC=CF,②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,∴DF=AD=4,O为DF中点.∴OC=DF=1.24、(1);(2)4.【分析】(1)将点A(﹣2,a)代入直线y=-x得A坐标,再将点A代入双曲线即可得到k值,由AB关于原点对称得到B点坐标,由BC⊥x轴,垂足为C,确定出点C坐标,将A、C代入一次函数解析式即可求解;(2)由三角形面积公式即可求解.【详解】将点A(﹣2,a)代入直线y=-x得a=-2,所以A(-2,2),将A(-2,2)代入双曲线,得k=-4,∴,∵,,,,解得,∴;(2)【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.25、(3)-3;(2)k>2,见解析;(3)a>3或a<﹣3【分析】(3)把a=2,m=﹣5代入抛物线解析式即可求抛物线的最值;(2)把a=2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于2和a小于2两种情况讨论即可得a的取值范围.【详解】解:(3)当a=2,m=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣3所以抛物线的最小值为﹣3.(2)当a=2时,y=x2﹣4x+m因为该抛物线与坐标轴有两个交点,①该抛物线与x轴、y轴分别有一个交点∴△=36-4m=2,∴m=4,∴y=x2﹣4x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,则k>2;②该抛物线与x轴、y轴交于原点,即m=2,∴y=x2﹣4x∵把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,∴y=x2﹣4x+k此时△<2,即36﹣4k<2解得k>4;综上,k>2时,函数沿y轴向上平移k个单位长度后,得到新的抛物线与x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论