




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知点(﹣4,y1)、(4,y2)都在函数y=x2﹣4x+5的图象上,则y1、y2的大小关系为()A.y1<y2 B.y1>y2 C.y1=y2 D.无法确定2.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.3.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(b+2a,2b) B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c) D.(a﹣c,﹣2a﹣2c)4.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC5.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°6.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断7.下列四组、、的线段中,不能组成直角三角形的是()A.,, B.,,C.,, D.,,8.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.59.已知点是线段的一个黄金分割点,则的值为()A. B. C. D.10.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣ D.11.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线12.如图,正方形的边长为,点在边上.四边形也为正方形,设的面积为,则()A.S=2 B.S=2.4C.S=4 D.S与BE长度有关二、填空题(每题4分,共24分)13.如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.14.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,点是对称轴右侧抛物线上一点,且,则点的坐标为___________.15.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.16.如图,半圆的半径为4,初始状态下其直径平行于直线.现让半圆沿直线进行无滑动滚动,直到半圆的直径与直线重合为止.在这个滚动过程中,圆心运动路径的长度等于_________.17.小明向如图所示的区域内投掷飞镖,阴影部分时的内切圆,已知,,,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.18.有一块三角板,为直角,,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_______三、解答题(共78分)19.(8分)定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形中,,求与的度数之和;(2)如图2,为锐角的外心,过点的直线交,于点,,,求证:四边形是对半四边形;(3)如图3,在中,,分别是,上一点,,,为的中点,,当为对半四边形的对半线时,求的长.20.(8分)把一根长为米的铁丝折成一个矩形,矩形的一边长为米,面积为S米,(1)求S关于的函数表达式和的取值范围(2)为何值时,S最大?最大为多少?21.(8分)如图,在中,于点.若,求的值.22.(10分)如图,直线y=ax+b与x轴交于点A(4,0),与y轴交于点B(0,﹣2),与反比例函数y=(x>0)的图象交于点C(6,m).(1)求直线和反比例函数的表达式;(2)连接OC,在x轴上找一点P,使△OPC是以OC为腰的等腰三角形,请求出点P的坐标;(3)结合图象,请直接写出不等式≥ax+b的解集.23.(10分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.24.(10分)如图,在四边形中,,,.分别以点,为圆心,大于长为半径作弧,两弧交于点,作直线交于点,交于点.请回答:(1)直线与线段的关系是_______________.(2)若,,求的长.25.(12分)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是:;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).26.如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),直线AB交x轴于点E,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式.(2)连结AC、BC,是否存在一点P,使△ABC的面积等于14?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)若△PAC与△PDE相似,求点P的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】首先根据二次函数解析式确定抛物线的对称轴为x=2,再根据抛物线的增减性以及对称性可得y1,y2的大小关系.【详解】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴对称轴为x=2,∵a>0,∴x>2时,y随x增大而增大,点(﹣4,y1)关于抛物线的对称轴x=2对称的点是(8,y1),8>4,∴y1>y2,故选:B.【点睛】本题主要考查的是二次函数的增减性,从对称轴分开,二次函数左右两边的增减性不相同结合题意即可解出此题.2、D【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】当时,一次函数经过一、二、三象限,反比例函数经过一、三象限;当时,一次函数经过一、二、四象限,反比例函数经过二、四象限.观察图形可知,只有A选项符合题意.
故选:D.【点睛】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.3、C【分析】作CH⊥x轴于H,AC交OH于F.由△CBH∽△BAO,推出,推出BH=﹣2a,CH=2b,推出C(b+2a,2b),由题意可证△CHF∽△BOD,可得,推出,推出FH=2c,可得C(﹣b﹣2c,2b),因为2c+2b=﹣2a,推出2b=﹣2a﹣2c,b=﹣a﹣c,可得C(a﹣c,﹣2a﹣2c),由此即可判断;【详解】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴,∴,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选C.【点睛】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.4、C【解析】根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.5、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算6、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.7、B【分析】根据勾股定理的逆定理判断三角形三边是否构成直角三角形,依次计算判断得出结论.【详解】A.∵,,∴,A选项不符合题意.B.∵,,∴,B选项符合题意.C.∵,,∴,C选项不符合题意.D.∵,∴,D选项不符合题意.故选:B.【点睛】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键.8、B【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.9、A【解析】试题分析:根据题意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=.故选B.考点:黄金分割点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点;其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.10、A【解析】把点(1,-1)代入解析式得-1=,
解得k=-1.
故选A.11、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.12、A【分析】连接FB,根据已知可得到⇒△ABC与△AFC是同底等高的三角形,由已知可求得△ABC的面积为大正方形面积的一半,从而不难求得S的值.【详解】解:连接FB,∵四边形EFGB为正方形∴∠FBA=∠BAC=45°,∴FB∥AC,∴△ABC与△AFC是同底等高的三角形,∵2S△ABC=S正ABCD,S正ABCD=2×2=4,∴S=2故选A.【点睛】本题利用了正方形的性质,内错角相等,两直线平行的判定方法,及同底等高的三角形的面积相等的性质求解.二、填空题(每题4分,共24分)13、【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点B2019的坐标.【详解】∵过点A1作x轴的垂线交过原点与x轴夹角为的直线l于点B1,OA1=2,∴∠B1OA1=60,∴∠OB1A1=30∴OB1=OA1=4,B1A1=∴B1(2,)∴直线y=x,以原O为圆心,OB1长为半径画弧x轴于点A2,则OA2=OB1,∵OA2=4,∴点A2的坐标为(4,0),∴B2的坐标为(4,4),即(22,22×),OA3=∴点A3的坐标为(8,0),B3(8,8),……,以此类推便可得出点A2019的坐标为(22019,0),点B2019的坐标为;故答案为:.【点睛】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键.14、【分析】根据已知条件,需要构造直角三角形,过D做DH⊥CR于点H,用含字母的代数式表示出PH、RH,即可求解.【详解】解:过点D作DQ⊥x轴于Q,交CB延长线于R,作DH⊥CR于H,过R做RF⊥y轴于F,∵抛物线与轴交于、两点,与轴交于点,∴A(1,0),B(2,0)C(0,2)∴直线BC的解析式为y=-x+2设点D坐标为(m,m²-3m+2),R(m,-m+2),∴DR=m²-3m+2-(-m+2)=m²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴CR=,∵经检验是方程的解.故答案为:【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.15、【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.16、【分析】由图可知,圆心运动路径的长度主要分两部分求解,从初始状态到垂直状态,圆心一直在一条直线上;从垂直状态到重合状态,圆心运动轨迹是圆周,计算两部分结果,相加即可.【详解】由题意知:半圆的半径为4,∴从初始状态到垂直状态,圆心运动路径的长度=.∴从垂直状态到重合状态,圆心运动路径的长度=.即圆心运动路径的总长度=.故答案为.【点睛】本题主要考查了弧长公式和圆周公式,正确掌握弧长公式和圆周公式是解题的关键.17、【分析】利用几何概率等于阴影部分的面积与三角形的面积之比即可得出答案.【详解】,,,∴是直角三角形,设圆的半径为r,利用三角形的面积有即解得∴阴影部分的面积为∵三角形的面积为∴飞镖落在阴影部分的概率为故答案为:.【点睛】本题主要考查几何概率,掌握几何概率的求法是解题的关键.18、1°【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA,∵OA,OB为半径,∴,∴,∴劣弧的度数等于,故答案为:1.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.三、解答题(共78分)19、(1);(2)详见解析;(3)5.25.【分析】(1)根据四边形内角和与对半四边形的定义即可求解;(2)根据三角形外心的性质得,得到,从而求出=60°,再得到,根据对半四边形的定义即可证明;(3)先根据为对半四边形的对半线得到,故可证明为等边三角形,再根据一线三等角得到,故,列出比例式即可求出AD,故可求解AC的长.【详解】(1)∵四边形内角和为∴,∵∴=则,∴(2)连结,由三角形外心的性质可得,所以,,所以,则在四边形中,,则另两个内角之和为,所以四边形为对半四边形;(3)若为对半线,则,∴所以为等边三角形∵∴又∴∵∴,∴∵F为DE中点,故∴∴【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知根据题意弄懂对半四边形,利用相似三角形的性质进行求解.20、(1)S=-+2x(0<x<2);(2)x=1时,面积最大,最大为1米2【分析】(1)根据矩形周长为米,一边长为x,得出另一边为2-x,再根据矩形的面积公式即可得出答案;(2)根据(1)得出的关系式,利用配方法进行整理,可求出函数的最大值,从而得出答案.【详解】解:(1)∵矩形的一边长为x米,∴另一边长为2-x米,∴S=x(2-x)=-x2+2x(0<x<2),即S=-x2+2x(0<x<2);(2)根据(1)得:S=-x2+2x=-(x-1)2+1,∴矩形一边长为1米时,面积最大为1米2,【点睛】本题考查的是二次函数的实际应用以及矩形面积的计算公式,关键是根据矩形的面积公式构建二次函数解决最值问题.21、【分析】(1)要求的值,应该要求CD的长.证得∠A=∠BCD,然后有tanA=tan∠BCD,表示出两个正切函数后可求得CD的长,于是可解.【详解】解:∵∠ACB=90°,CD⊥AB于点D,
∴∠A+∠ACD=∠ACD+∠BCD=90°,
∴∠A=∠BCD,∴tanA=tan∠BCD,∴,∴,∴CD=,∴tanA=.【点睛】本题考查了直角三角形三角函数的定义,利用三角函数构建方程求解有时比用相似更简便更直接.22、(1)y=x﹣1;y=;(1)点P1的坐标为(,0),点P1的坐标为(﹣,0),(11,0);(3)0<x≤2【解析】(1)根据点A,B的坐标,利用待定系数法即可求出直线AB的函数表达式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点C的坐标,利用待定系数法即可求出反比例函数的表达式;(1)过点C作CD⊥x轴,垂足为D点,利用勾股定理看求出OC的长,分OC=OP和CO=CP两种情况考虑:①当OP=OC时,由OC的长可得出OP的长,进而可求出点P的坐标;②当CO=CP时,利用等腰三角形的性质可得出OD=PD,结合OD的长可得出OP的长,进而可得出点P的坐标;(3)观察图形,由两函数图象的上下位置关系,即可求出不等式≥ax+b的解集.【详解】解:(1)将A(4,0),B(0,﹣1)代入y=ax+b,得:,解得:,∴直线AB的函数表达式为y=x﹣1.当x=2时,y=x﹣1=1,∴点C的坐标为(2,1).将C(2,1)代入y=,得:1=,解得:k=2,∴反比例函数的表达式为y=.(1)过点C作CD⊥x轴,垂足为D点,则OD=2,CD=1,∴OC=.∵OC为腰,∴分两种情况考虑,如图1所示:①当OP=OC时,∵OC=,∴OP=,∴点P1的坐标为(,0),点P1的坐标为(﹣,0);②当CO=CP时,DP=DO=2,∴OP=1OD=11,∴点P3的坐标为(11,0).(3)观察函数图象,可知:当0<x<2时,反比例函数y=的图象在直线y=x﹣1的上方,∴不等式≥ax+b的解集为0<x≤2.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、等腰三角形的性质、勾股定理以及反比例函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次(反比例)函数的关系式;(1)分OC=OP和CO=CP两种情况求出点P的坐标;(3)根据两函数图象的上下位置关系,找出不等式的解集.23、(1);(2)①;存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,,,,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【详解】解:如图(1),;(2)作交于点.①设,,则:则时,最大,;(2),则,设,①若:则,∴;②若则,,作于,,与重合,关于对称,∴【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙求法,以及对称点之间的关系.24、(1)AE垂直平分BD;(2)【分析】(1)根据基本作图,可得AE垂直平分BD;(2)连接FB,由垂直平分线的性质得出FD=FB.再根据AAS证明△AOB≌△FOD,那么AB=FD=3,利用线段的和差关系求出FC,然后在直角△FBC中利用勾股定理求出BC的长.【详解】(1)根据作图方法可知:AE垂直平分BD;(2)如图,连接BF,∵AE垂直平分BD,∴OB=OD,∠AOB=∠FOD=90°,FD=FB,又∵AB∥CD,∴∠OAB=∠OFD,在△AOB和△FOD中,,∴△AOB≌△FOD(AAS),∴AB=FD=3,∴,在Rt△BCF中,.【点睛】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与FD是解题的关键.25、(1);(2).【解析】(1)共4张卡片,奇数卡片有2张,利用概率公式直接进行计算即可;(2)画出表格,数出总情况数,数出抽取的2张卡片标有数字之和大于4的情况数,再利用概率公式进行计算即可【详解】(1)共4张卡片,奇数卡片有2张,所以恰好抽到标有奇数卡片的概率是(2)表格如下一共有12种情况,其中2张卡片标有数字之和大于4的有8种情况,所以答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是,抽取的2张卡片标有数字之和大于4的概率为.【点睛】本题主要考查利用画树状图或列表求概率问题,本题关键在于能够列出表格26、(1)y=2x2﹣8x+6;(2)不存在一点P,使△ABC的面积等于14;(3)点P的坐标为(3,5)或(,).【分析】(1)由B(4,m)在直线y=x+2上,可求得m的值,已知抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过待定系数法即可求得解析式;(2)设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC的长度与P点横坐标的函数关系式,根据三角形面积公式列出方程,即可解答;(3)根据△PAC与△PDE相似,可得△PAC为直角三角形,根据直角顶点的不同,有3种情形,分类讨论,即可分别求解.【详解】(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,),B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=/r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语教育行业专业术语练习题
- 五年级语文古诗赏析与背景知识
- 网络运营服务协议条款说明
- 《物理公式记忆与实际应用教案》
- 数学公式与计算能力测试卷
- 教育经费投入情况统计表格(年度)
- 零售商店经营数据表
- 地理自然环境保护练习题
- 电力电气工程基础习题集萃
- 一氧化碳中试平台的经济效益评估与投资回报分析
- 化工环境保护与及安全技术概论考试题及答案
- GA/T 1969-2021法医学机械性损伤致伤物分类及推断指南
- 2023年湘西市(中小学、幼儿园)教师招聘笔试题库及答案解析
- 《传热学》第四版教学课件
- 小学禁毒安全主题班会课件
- 公司企业实习鉴定表格
- 档案馆建设标准
- 华中科技大学官方信纸4
- 交通运输企业安全生产隐患排查清单
- DB22∕T 2862-2018 林木种子园营建技术规程
- 部编版四年级语文下册期末调研测试卷(江苏南京江宁区2021春真卷)
评论
0/150
提交评论