2023届福建省福州市鼓楼区延安中学数学九年级上册期末监测模拟试题含解析_第1页
2023届福建省福州市鼓楼区延安中学数学九年级上册期末监测模拟试题含解析_第2页
2023届福建省福州市鼓楼区延安中学数学九年级上册期末监测模拟试题含解析_第3页
2023届福建省福州市鼓楼区延安中学数学九年级上册期末监测模拟试题含解析_第4页
2023届福建省福州市鼓楼区延安中学数学九年级上册期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A.0 B.1 C.2 D.32.朗读者是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:平均数中位数众数方差对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是A.平均数 B.中位数 C.众数 D.方差3.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有()A.①②③ B.②③④ C.①②④ D.①③④4.若关于的方程有两个相等的根,则的值为()A.10 B.10或14 C.-10或14 D.10或-145.已知一个几何体如图所示,则该几何体的主视图是()A. B.C. D.6.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()A.42° B.48°C.52° D.58°7.如图,在中,.以为直径作半圆,交于点,交于点,若,则的度数是()A. B. C. D.8.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20 B.40 C.100 D.1209.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1 B.﹣3 C.5 D.110.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.4.25m B.4.45m C.4.60m D.4.75m二、填空题(每小题3分,共24分)11.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.12.已知正方形ABCD的边长为,分别以B、D为圆心,以正方形的边长为半径在正方形内画弧,得到如图所示的阴影部分,若随机向正方形ABCD内投掷一颗石子,则石子落在阴影部分的概率为_____.(结果保留π)13.关于x的一元二次方程x2+mx+3=0的一个根是2,则m的值为________.14.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.15.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.16.若点,是抛物线上的两个点,则此抛物线的对称轴是___.17.如图:点是圆外任意一点,连接、,则______(填“>”、“<”或“=”)18.二次函数,当时,y随x的增大而减小,则m的取值范围是__________.三、解答题(共66分)19.(10分)如图,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴交点为C,M(3,0)、N(0,﹣2)分别是x轴、y轴上的点.(1)求点C的坐标(用含m的代数式表示);(2)若抛物线与x轴有两个交点A、B,是否存在这样的m,使得线段AB=MN,若存在,求出m的值,若不存在,请说明理由;(3)若抛物线与线段MN有公共点,求m的取值范围.20.(6分)已知关于的方程有两个不相等的实数根.(1)求的取值范围;(2)若,求的值.21.(6分)如图,四边形ABCD中,AB∥CD,CD≠AB,点F在BC上,连DF与AB的延长线交于点G.(1)求证:CF•FG=DF•BF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=12,EF=8,求CD的长.22.(8分)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?23.(8分)如图1,在矩形中,,点从点出发向点移动,速度为每秒1个单位长度,点从点出发向点移动,速度为每秒2个单位长度.两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止.(1)若两点的运动时间为,当为何值时,?(2)在(1)的情况下,猜想与的位置关系并证明你的结论.(3)①如图2,当时,其他条件不变,若(2)中的结论仍成立,则_________.②当,时,其他条件不变,若(2)中的结论仍成立,则_________(用含的代数式表示).24.(8分)(1)计算:2sin30°+cos30°•tan60°.(2)已知,且a+b=20,求a,b的值.25.(10分)如图①,在中,,是边上任意一点(点与点,不重合),以为一直角边作,,连接,.若和是等腰直角三角形.(1)猜想线段,之间的数量关系及所在直线的位置关系,直接写出结论;(2)现将图①中的绕着点顺时针旋转,得到图②,请判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.26.(10分)李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160130203251摸到黑球的频率0.230.210.30_______________(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)(2)估算袋中白球的个数为________.(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k-1<0,k<1.故选A.考点:反比例函数的性质.2、B【分析】根据方差、平均数、众数和中位数的定义进行判断.【详解】解:对9位评委所给的分数,去掉一个最高分和一个最低分后,中位数一定不发生变化.故选B.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数、众数和中位数.3、C【解析】如图(见解析),过点E作,根据平行线的性质、角平分线的性质、相似三角形的判定定理与性质逐个判断即可.【详解】如图,过点E作,即ED平分,EC平分,即,故①正确又ED平分,EC平分,点E是AB的中点,故②正确在和中,同理可证:,故④正确又,即在中,,故③错误综上,正确的有①②④故选:C.【点睛】本题考查了平行线的性质、角平分线的性质、相似三角形的判定定理与性质,通过作辅助线,构造垂线和两组全等的三角形是解题关键.4、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:∵关于的方程有两个相等的根,∴,即有,解得10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程有两个相等的两个实数根是解答此题的关键.5、A【分析】主视图是从物体正面看,所得到的图形.【详解】该几何体的主视图是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.6、A【解析】试题分析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.考点:旋转的性质.7、A【分析】连接BE、AD,根据直径得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度数,根据圆周角定理求出即可.【详解】解:连接BE、AD,

∵AB是圆的直径,

∴∠ADB=∠AEB=90°,

∴AD⊥BC,

∵AB=AC,∠C=70°,

∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°

∴=50°.故选A.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,准确作出辅助线是解题的关键.8、D【分析】设围成面积为acm2的长方形的长为xcm,由长方形的周长公式得出宽为(40÷2﹣x)cm,根据长方形的面积公式列出方程x(40÷2﹣x)=a,整理得x2﹣20x+a=0,由△=400﹣4a≥0,求出a≤100,即可求解.【详解】设围成面积为acm2的长方形的长为xcm,则宽为(40÷2﹣x)cm,依题意,得x(40÷2﹣x)=a,整理,得x2﹣20x+a=0,∵△=400﹣4a≥0,解得a≤100,故选D.9、D【分析】把x=﹣1代入方程2x2﹣mx﹣3=0得到2+m﹣3=0,然后解关于m的方程即可.【详解】把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选D.【点睛】本题考查了一元二次方程的解,熟知能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.10、B【分析】此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】如图,设BD是BC在地面的影子,树高为x,

根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,

∴BD=0.96,

∴树在地面的实际影子长是0.96+2.6=3.56,

再竹竿的高与其影子的比值和树高与其影子的比值相同得,

∴x=4.45,

∴树高是4.45m.

故选B.【点睛】抓住竹竿的高与其影子的比值和树高与其影子的比值相同是关键.二、填空题(每小题3分,共24分)11、【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为=,故答案为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12、【分析】先求出空白部分面积,进而得出阴影部分面积,再利用石子落在阴影部分的概率=阴影部分面积÷正方形面积,进而得出答案.【详解】∵扇形ABC中空白面积=,∴正方形中空白面积=2×(2﹣)=4﹣π,∴阴影部分面积=2﹣(4﹣π)=π﹣2,∴随机向正方形ABCD内投掷一颗石子,石子落在阴影部分的概率=.故答案为:.【点睛】本题主要考查扇形的面积公式和概率公式,通过割补法,求出阴影部分面积,是解题的关键.13、-【分析】把x=2代入原方程可得关于m的方程,解方程即可求出m的值.【详解】解:当x=2时,,解得:m=﹣.故答案为:﹣.【点睛】本题考查了一元二次方程的解的定义,属于基础题型,熟知一元二次方程解的概念是关键.14、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题,实质上是顶点的平移,原抛物线y=顶点坐标为(O,O),向左平移2个单位,顶点坐标为(-2,0),根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.15、6cm【分析】利用相似三角形的周长比等于相似比,根据它们的周长之和为15,即可得到结论.【详解】解:∵两个相似三角形的对应角平分线的比为2:3,∴它们的周长比为2:3,∵它们的周长之和为15cm,∴较小的三角形周长为15×=6(cm).故答案为:6cm.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.16、x=3【分析】根据抛物线的对称性即可确定抛物线对称轴.【详解】解:点,是抛物线上的两个点,且纵坐标相等.根据抛物线的对称性知道抛物线对称轴是直线.故答案为:.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.17、<【分析】设BP与圆交于点D,连接AD,根据同弧所对的圆周角相等,可得∠ACB=∠ADB,然后根据三角形外角的性质即可判断.【详解】解:设BP与圆交于点D,连接AD∴∠ACB=∠ADB∵∠ADB是△APD的外角∴∠ADB>∴<∠ACB故答案为:<.【点睛】此题考查的是圆周角定理的推论和三角形外角的性质,掌握同弧所对的圆周角相等和三角形的外角大于任何一个与它不相邻的内角是解决此题的关键.18、【分析】先根据二次函数的解析式判断出函数的开口方向,再由当时,函数值y随x的增大而减小可知二次函数的对称轴,故可得出关于m的不等式,求出m的取值范围即可.【详解】解:∵二次函数,a=−1<0,∴抛物线开口向下,∵当时,函数值y随x的增大而减小,∴二次函数的对称轴,即,解得,故答案为:.【点睛】本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.三、解答题(共66分)19、(1)(0,m﹣4);(1)存在,m=;(3)﹣≤m≤1【分析】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,即可求解;(3)联立抛物线与直线MN的表达式得:方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,即可求解.【详解】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,解得:m;(3)∵M(3,0),N(0,﹣1),∴直线MN的解析式为yx﹣1.∵抛物线与线段MN有公共点,则方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,∴()1﹣4(﹣m+1)≥0,解得:m≤1.【点睛】本题考查了二次函数综合运用,涉及到一次函数的性质、解不等式、一元二次方程等,其中(3),确定△≥0,且m﹣4≤﹣1是解答本题的难点.20、(1)且;(2)8【分析】(1)利用根的判别式求解即可;(2)利用求根公式求解即可.【详解】解:(1)∵方程有两个不相等的实数根,∴且,解得且.∴的取值范围是且.(2)∵是方程的两个根,∴,,∴,即.解得(舍去),,经检验,是原方程的解.故的值是8.【点睛】本题考查的知识点是一元二次方程根与系数的关系,熟记根的判别式以及求根公式是解此题的关键.21、(1)证明见解析;(2)1.【分析】(1)证明△CDF∽△BGF可得出结论;(2)证明△CDF≌△BGF,可得出DF=GF,CD=BG,得出EF是△DAG的中位线,则2EF=AG=AB+BG,求出BG即可.【详解】(1)证明:∵四边形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,∴△CDF∽△BGF.∴,∴CF•FG=DF•BF;(2)解:由(1)△CDF∽△BGF,又∵F是BC的中点,BF=FC,∴△CDF≌△BGF(AAS),∴DF=GF,CD=BG,∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×8﹣12=1,∴BG=1.【点睛】此题考查三角形相似的判定及性质定理,三角形全等的判定及性质定理,三角形的中位线定理,(2)利用(1)的相似得到三角形全等是解题的关键,由此利用中点E得到三角形的中位线,利用中位线的定理来解题.22、参加旅游的人数40人.【分析】首先设有人参加这次旅游,判定,然后根据题意列出方程,再判定出符合题意的解即可.【详解】设有人参加这次旅游∵∴参加人数依题意得:解得:,当时,,符合题意.当时,,不符合题意答:参加旅游的人数40人.【点睛】此题主要考查一元二次方程的实际应用,解题关键是理解题意,列出方程.23、(1);(2),证明见解析;(3)①;②【分析】(1)根据相似三角形的性质,可得,进而列出方程,求出t的值.(2)根据相似三角形的性质,可得,进而根据等量关系以及矩形的性质,得出,进而得出结论.(3)①根据全等三角形的判定,可得出△AMB≌△DNA,再根据全等三角形的性质,即可得出AM=DN,得出方程,求解即可得出答案.【详解】解:(1)∵,∴,∴,解得.(2).证明:∵,∴.∵,∴,∴,即.(3)①∵∴∠ABE+∠BAE=90°∵∴∵AD=AB,∠BAD=∠ADC=90°∴△AMB≌△DNA∴AM=DN∴t=2-2t∴t=②∵由①知,∠BAD=∠ADC=90°∴∵∴=n∴∴t=【点睛】本题主要考察了相似三角形和全等三角形,熟练掌握相似三角形的性质和正确找出线段之间的关系是解题的关键.24、(1);(2)a=8,b=12【分析】(1)代入特殊角的三角函数值,根据二次根式的运算法则计算即可;(2)设=k,即a=2k,b=3k,代入a+b=20,求出k的值,即可求出a,b的值.【详解】(1)原式==1+=;(2)设=k,即a=2k,b=3k,代入a+b=20,得2k+3k=20,∴k=4,∴a=8,b=12.【点睛】本题考查了特殊角的三角函数值,实数的混合运算,比例的性质,熟练掌握各知识点是解答本题的关键.25、(1)BE=AD,BE⊥AD;(2)BE=AD,BE⊥AD仍然成立,理由见解析【分析】(1)由CA=CB,CE=CD,∠ACB=90°易证△BCE≌△ACD,所以BE=AD/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论