2022年重庆南开中学数学九年级上册期末调研试题含解析_第1页
2022年重庆南开中学数学九年级上册期末调研试题含解析_第2页
2022年重庆南开中学数学九年级上册期末调研试题含解析_第3页
2022年重庆南开中学数学九年级上册期末调研试题含解析_第4页
2022年重庆南开中学数学九年级上册期末调研试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤a+c<,其中正确结论的个数是()A.②③④ B.①②⑤ C.①②④ D.②③⑤3.已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为()A.4个 B.3个 C.2个 D.1个4.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于()A.50° B.49° C.48° D.47°5.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个 B.2个 C.3个 D.4个6.小明沿着坡度为的山坡向上走了,则他升高了()A. B. C. D.7.如图,在平行四边形中,点在边上,,连接交于点,则的面积与的面积之比为()A. B. C. D.8.如图,在△ABC中,DE∥BC,,BC=12,则DE的长是()A.3 B.4 C.5 D.69.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A. B. C. D.10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19611.如图,为的直径,点为上一点,,则劣弧的长度为()A. B.C. D.12.在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的锐角三角函数值()A.扩大2倍 B.缩小 C.不变 D.无法确定二、填空题(每题4分,共24分)13.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.已知⊙半径为,点在⊙上,,则线段的最大值为_____.16.定义:如果一元二次方程ax2+bx+c=1(a≠1)满足a+b+c=1.那么我们称这个方程为“凤凰”方程,已知ax2+bx+c=1(a≠1)是“凤凰”方程,且有两个相等的实数根,则下列结论:①a=c,②a=b,③b=c,④a=b=c,正确的是_____(填序号).17.如图,是的切线,为切点,,,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_________

18.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.三、解答题(共78分)19.(8分)已知二次函数y=x2-4x+1.(1)用配方法将y=x2-4x+1化成y=a(x-h)2+k的形式;(2)在平面直角坐标系xOy中,画出该函数的图象.(1)结合函数图象,直接写出y<0时自变量x的取值范围.20.(8分)一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别.从中任意摸出一个球.(1)求摸到绿球的概率.(2)求摸到红球或绿球的概率.21.(8分)如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD.(2)若EB=8cm,CD=24cm,求⊙O的直径.22.(10分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.23.(10分)如图,是⊙的直径,是⊙的弦,且,垂足为.(1)求证:;(2)若,求的长.24.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.25.(12分)已知关于的方程.(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k的值.26.如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.2、B【分析】令x=1,代入抛物线判断出①正确;根据抛物线与x轴的交点判断出②正确;根据抛物线的对称轴为直线x=﹣1列式求解即可判断③错误;令x=﹣2,代入抛物线即可判断出④错误,根据与y轴的交点判断出c=1,然后求出⑤正确.【详解】解:由图可知,x=1时,a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴△=>0,故②正确;∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x==﹣1,∴b=2a<0,故③错误;由图可知,x=﹣2时,4a﹣2b+c>0,故④错误;当x=0时,y=c=1,∵a+b+c<0,b=2a,∴3a+1<0,∴a<∴a+c<,故⑤正确;综上所述,结论正确的是①②⑤.故选:B.【点睛】本题主要考查二次函数的图像与性质,关键是根据题意及图像得到二次函数系数之间的关系,熟记知识点是前提.3、B【分析】由抛物线的开口方向、对称轴、与y轴的交点位置,可判断a、b、c的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【详解】解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵0<-<1,∴b>0,且b<-2a,∴abc<0,2a+b<0,故①不正确,②正确;

∵当x=-2时,y<0,∴4a-2b+c<0,故③正确;∵当x=1时,y>0,∴a+b+c>0,又c>0,∴a+b+2c>0,故④正确;

综上可知正确的有②③④,

故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用.4、A【解析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=12∠AOC=50°故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5、B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.6、A【分析】根据题意作出图形,然后根据坡度为1:2,设BC=x,AC=2x,根据AB=1000m,利用勾股定理求解.【详解】解:根据题意作出图形,∵坡度为1:2,∴设BC=x,AC=2x,∴,∵AB=1000m,∴,解得:,故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡度构造直角三角形然后求解.7、C【分析】先求出,再根据平行四边形的性质可得AB∥CD,AB=CD,从而证出△BAF∽△DEF,,然后根据相似三角形的性质即可求出结论.【详解】解:∵∴∴∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴△BAF∽△DEF,∴故选C.【点睛】此题考查的是平行四边形的性质和相似三角形的判定及性质,掌握平行四边形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.8、B【解析】试题解析:在△ABC中,DE∥BC,故选B.9、D【解析】根据主视图是从物体正面看所得到的图形判断即可.【详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形.故选:D.【点睛】本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.10、C【详解】试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.11、A【分析】根据“直径所对圆周角为90°”可知为直角三角形,在可求出∠BAC的正弦值,从而得到∠BAC的度数,再根据圆周角定理可求得所对圆心角的度数,最后利用弧长公式即可求解.【详解】∵AB为直径,AO=4,∴∠ACB=90°,AB=8,在中,AB=8,BC=,∴sin∠BAC=,∵sin60°=,∴∠BAC=60°,∴所对圆心角的度数为120°,∴的长度=.故选:A.【点睛】本题考查弧长的计算,明确圆周角定理,锐角三角函数及弧长公式是解题关键,注意弧长公式中的角度指的是圆心角而不是圆周角.12、C【解析】∵在Rt△ABC中,∠C=90°,∴,,,∴在Rt△ABC中,各边都扩大2倍得:,,,故在Rt△ABC中,各边都扩大2倍,则锐角A的锐角三角函数值不变.故选C.【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A的三角函数值是不会变的.二、填空题(每题4分,共24分)13、0〈x〈1或x〈-2【分析】利用一次函数图象和反比例函数图象性质数形结合解不等式:【详解】解:a+1=-1,a=-2,由函数图象与不等式的关系知,0<x<1或x<-2.故答案为0<x<1或x<-2.14、1【分析】设共有x个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:,把相关数值代入求正数解即可.【详解】设共有x个飞机场.,解得,(不合题意,舍去),故答案为:1.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.16、①【分析】由方程有两个相等的实数根,得到根的判别式等于1,再由a+b+c=1,把表示出b代入根的判别式中,变形后即可得到a=c.【详解】解:∵方程有两个相等实数根,且a+b+c=1,∴b2﹣4ac=1,b=﹣a﹣c,将b=﹣a﹣c代入得:a2+2ac+c2﹣4ac=(a﹣c)2=1,则a=c.故答案为:①.【点睛】此题考查了根的判别式,以及一元二次方程的解,一元二次方程中根的判别式大于1,方程有两个不相等的实数根;根的判别式等于1,方程有两个相等的实数根;根的判别式小于1,方程无解.17、【分析】根据题意可知当ED与相切时,EC最大,再利用△ECD∽△EBA,找到对应边的关系即可求解.【详解】解:如图,当CD⊥DE于点D时EC最大.∵CD⊥DE,是的切线∴∠EDC=∠EAB=90°又∵∠E=∠E∴△ECD∽△EBA∴∴则∵,,∠EAB=90°∴CD=AC=1在Rt△ABE中利用勾股定理得即则∴可化为,解得或(舍去)综上所述,的最大值为.【点睛】本题考查了切线和相似的性质,能通过切线的性质找到符合要求的点,再能想到相似得到对应边的关系是解答此题的关键.18、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=5三、解答题(共78分)19、(1);(2)见解析;(1)1<x<1【分析】(1)运用配方法把一般式化为顶点式;

(2)根据函数图象的画法画出二次函数图象即可;

(1)运用数形结合思想解答即可.【详解】(1)(2)在平面直角坐标系xOy中,画出该函数的图象如下:(1)y<0即在x轴下方的点,由图形可以看出自变量x的取值范围为:1<x<1【点睛】本题考查的是二次函数的三种形式、二次函数的性质,掌握配方法把一般式化为顶点式是解题的关键.20、(1);(2).【分析】(1)由题意可知绿球占总数的六分之一,因此摸到绿球的概率为六分之一,(2)红球和绿球共有9个,占总数的二分之一,因此摸到红球或绿球的概率为二分之一.【详解】解:解:(1),(2).【点睛】本题考查随机事件发生的概率,关键是找出所有可能出现的结果数和符合条件的结果数.21、(1)证明见解析;(2)⊙O的直径为26cm.【分析】(1)由AB为⊙O的直径,CD是弦,且AB⊥CD于E,根据垂径定理的即可求得CE=ED,,然后由圆周角定理与等腰三角形的性质,即可证得:∠ACO=∠BCD.(2)设⊙O的半径为Rcm,得到OE=OB-EB=R-8,根据垂径定理得到CE=CD=24=12,利用在RtCEO中,由勾股定理列出方程,故可求解.【详解】证明:(1)∵AB为⊙O的直径,CD是弦,且ABCD于E,∴CE=ED,,∴BCD=BAC∵OA=OC,∴OAC=OCA,∴ACO=BCD(2)设⊙O的半径为Rcm,则OE=OB-EB=R-8,CE=CD=24=12在RtCEO中,由勾股定理可得OC=OE+CER=(R8)+12解得:R=13,∴2R=213=26答:⊙O的直径为26cm.【点睛】此题考查了圆周角定理、垂径定理、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.22、(1)详见解析;(2)4;(3)【分析】(1)首先连接,通过半径和角平分线的性质进行等角转换,得出,进而得出,即可得证;(2)首先连接,得出,进而得出,再根据勾股定理得出DE;(3)首先连接,过点作,得出,再得,进而得出,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接∵∴∵平分∴∴∴∵∴又∵是的半径∴与相切(2)解:连接∵AB为直径∴∠ADB=90°∵∴∴∴∴中(3)连接,过点作于∵,DE⊥AE,AD=AD∴∴,DE=DG∴∴∴即:∴∴根据二次函数知识可知:当时,【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.23、(1)见解析;(2)1.【分析】(1)先根据垂径定理得出,然后再利用圆周角定理的推论即可得出;(2)先根据勾股定理求出AB的长度,然后利用的面积求出CE的长度,最后利用垂径定理可得CD=2CE,则答案可求.【详解】(1)证明:∵为⊙的直径,,,;(2)解:∵为⊙的直径,∴,,,又∵∴.∵,即,解得,∵为⊙的直径,,∴.【点睛】本题主要考查垂径定理,圆周角定理的推论,勾股定理,掌握垂径定理,圆周角定理的推论,勾股定理是解题的关键.24、(1)水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8);(2)为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)扩建改造后喷水池水柱的最大高度为米.【解析】分析:(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.详解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+.∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+,∴扩建改造后喷水池水柱的最大高度为米.点睛:本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.25、(1)证明见解析;(2)正整数.【分析】(1)证明根的判别式不小于0即可;

(2)根据公式法求出方程的两根,用k表示出方程的根,再根据方程的两个实数根都是整数,进而求出k的值.【详解】解:(1)证明:,∴方程一定有两个实数根.(2)解:,,,,∵方程的两个实数根都是整数,∴正整数1或1.26、(/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论