版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°2.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠C=40°,则∠OAB的度数为()A.30° B.40° C.50° D.80°4.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为()A.95% B.97% C.92% D.98%5.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5) C.(3,﹣5) D.(﹣3,﹣5)6.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数的图象上有且只有一个完美点,且当时,函数的最小值为﹣3,最大值为1,则m的取值范围是()A. B. C. D.7.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为()A.3 B.7 C. D.8.方程的解是().A.x1=x2=0 B.x1=x2=1 C.x1=0,x2=1 D.x1=0,x2=-19.如图是某个几何体的三视图,则该几何体是(
)A.长方体 B.圆锥 C.圆柱 D.三棱柱10.若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm11.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润和月份之间的函数关系式为,则该企业一年中应停产的月份是()A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月12.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25° B.20° C.15° D.30°二、填空题(每题4分,共24分)13.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.14.一元二次方程x2﹣3x+2=0的两根为x1,x2,则x1+x2﹣x1x2=______.15.已知是方程的两个实数根,则的值是____.16.已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为_____.17.如图,在正方形和正方形中,点和点的坐标分别为,,则两个正方形的位似中心的坐标是___________.18.如图,斜坡长为100米,坡角,现因“改小坡度”工程的需要,将斜坡改造成坡度的斜坡(、、三点在地面的同一条垂线上),那么由点到点下降了_________米(结果保留根号)三、解答题(共78分)19.(8分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?20.(8分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.21.(8分)如图,在平面直角坐标系xOy中,二次函数的图象与轴,轴的交点分别为和.(1)求此二次函数的表达式;(2)结合函数图象,直接写出当时,的取值范围.22.(10分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.23.(10分)已知抛物线的顶点坐标是(1,-4),且经过点(0,-3),求与该抛物线相应的二次函数表达式.24.(10分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.25.(12分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中的值是________;(2)被查的200名生中最喜欢球运动的学生有________人;(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.26.现有、两个不透明的盒子,盒中装有红色、黄色、蓝色卡片各1张,盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从、两个盒子中任意摸出一张卡片.(1)从盒中摸出红色卡片的概率为______;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】连接BD,根据圆周角定理得出∠ADC=30°,∠ADB=90°,再根据三角形的外角性质可得到结论.【详解】如图,连接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故选D【点睛】本题考查了圆周角定理和三角形的外角性质.正确应用圆周角定理找出∠ADC=30°,∠ADB=90°是解题的关键.2、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.3、C【分析】直接利用圆周角定理得出∠AOB的度数,再利用等腰三角形的性质得出答案.【详解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故选:C.【点睛】本题主要考查了三角形的外接圆与外心,圆周角定理.正确得出∠AOB的度数是解题关键.4、C【分析】随机调查1包餐纸的合格率作为该酒店的餐纸的合格率,即用样本估计总体.【详解】解:1包(每包1片)共21片,1包中合格餐纸的合格率.故选:C.【点睛】本题考查用样本估计整体,注意1包中的总数是21,不是1.5、B【解析】解:抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B.6、C【分析】根据完美点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意方程有两个相等的实数根,求得4ac=9,再根据方程的根为=,从而求得a=-1,c=-,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.【详解】解:令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32-4ac=0,即4ac=9,
又方程的根为=,
解得a=-1,c=-,
故函数y=ax2+4x+c-=-x2+4x-3,
如图,该函数图象顶点为(2,1),与y轴交点为(0,-3),由对称性,该函数图象也经过点(4,-3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=-x2+4x-3的最小值为-3,最大值为1,
∴2≤m≤4,
故选:C.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,利用分类讨论以及数形结合的数学思想得出是解题关键.7、D【解析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=时,y的最大值为()2+4×+3=,故选:D.【点睛】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用8、D【分析】利用提公因式法解方程,即可得到答案.【详解】解:∵,∴,∴或;故选择:D.【点睛】本题考查了解一元二次方程,熟练掌握提公因式法解方程是解题的关键.9、B【分析】根据几何体的三视图,可判断出几何体.【详解】解:∵主视图和左视图是等腰三角形∴此几何体是锥体∵俯视图是圆形∴这个几何体是圆锥故选B.【点睛】此题主要考查了几何体的三视图,关键是利用主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.10、C【分析】根据圆锥的底面圆周长是扇形的弧长列式求解即可.【详解】设圆锥的底面半径是r,由题意得,,∴r=3cm.故选C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.11、C【分析】根据解析式,求出函数值y等于2时对应的月份,依据开口方向以及增减性,再求出y小于2时的月份即可解答.【详解】解:∵
∴当y=2时,n=2或者n=1.
又∵抛物线的图象开口向下,
∴1月时,y<2;2月和1月时,y=2.
∴该企业一年中应停产的月份是1月、2月、1月.
故选:C.【点睛】本题考查二次函数的应用.能将二次函数由一般式化为顶点式并理解二次函数的性质是解决此题的关键.12、A【分析】根据圆周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等边对等角即可求解答.【详解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案为A.【点睛】本题考查了圆周角定理和平行线的性质,灵活应用所学定理以及数形结合思想的应用都是解答本题的关键.二、填空题(每题4分,共24分)13、1【分析】连结OB,可知△OAB和△OBC都是等腰三角形,∠ABC=∠A+∠C=∠AOC,四边形内角和360゜,可求∠B.【详解】如图,连结OB,∵OA=OB=OC,∴△OAB和△OBC都是等腰三角形,∴∠A=∠OBA,∠C=∠OBC,∴∠ABC=∠OBA+∠OBC=∠A+∠C,∴∠A+∠C=∠ABC=∠AOC∵∠A+∠ABC+∠C+∠AOC=360゜∴3∠ABC=360゜∴∠ABC=1゜即∠B=1゜.故答案为:1.【点睛】本题考查圆周角度数问题,要抓住半径相等构造两个等腰三角形,把问题转化为解∠B的方程是关键.14、1【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,
所以x1+x2-x1x2=3-2=1.
故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.15、1【分析】根据一元二次方程根与系数的关系可得出,,再代入中计算即可.【详解】解:∵是方程的两个实数根,∴,,∴,故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟知:若是一元二次方程的两个根,则,.16、1【分析】设方程的另一个根为a,根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【详解】设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=1,故答案为1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.17、或【分析】根据位似变换中对应点的坐标的变化规律,分两种情况:一种是当点E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【详解】∵正方形和正方形中,点和点的坐标分别为,∴(1)当点E和C是对应顶点,G和A是对应顶点,位似中心就是EC与AG的交点.设AG所在的直线的解析式为解得∴AG所在的直线的解析式为当时,,所以EC与AG的交点为(2)A和E是对应顶点,C和G是对应顶点.,则位似中心就是AE与CG的交点设AE所在的直线的解析式为解得∴AE所在的直线的解析式为设CG所在的直线的解析式为解得∴AG所在的直线的解析式为联立解得∴AE与CG的交点为综上所述,两个正方形的位似中心的坐标是或故答案为或【点睛】本题主要考查位似图形,涉及了待定系数法求函数解析,求位似中心,正确分情况讨论是解题的关键.18、【分析】根据直角三角形的性质求出AC,根据余弦的定义求出BC,根据坡度的概念求出CD,结合图形计算,得到答案.【详解】在Rt△ABC中,∠ABC=30°,
∴AC=AB=50,BC=AB•cos∠ABC=50,
∵斜坡BD的坡度i=1:5,
∴DC:BC=1:5,
∴DC=10,
则AD=50-10,
故答案为:50-10.【点睛】此题考查解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.三、解答题(共78分)19、(1)22%;(2)22元.【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达1.8万人次.列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可.【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增长率为22%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y﹣6)[322+32(25﹣y)]=6322,整理得:y2﹣41y+422=2,解得:y1=22,y2=3.∵让顾客获得最大优惠,∴y=22.答:当每杯售价定为22元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6322元的利润额.
【点睛】本题考查了一元二次方程在实际问题中的应用,理清题中的数量关系并正确列出方程是解题的关键.20、.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果.【详解】解:画树状图如下:共有9种等可能的结果数,其中两次摸出的球的颜色相同的结果数为3,所以过关的概率是=.【点睛】本题的考点是树状图法.方法是根据题意画出树状图,由树状图得出答案.21、(1);(2)或.【分析】(1)把已知的两点代入解析式即可求出二次函数的解析式;(2)由抛物线的对称性与图形即可得出时的取值范围.【详解】解:(1)∵抛物线与轴、轴的交点分别为和,∴.解得:.∴抛物线的表达式为:.(2)二次函数图像如下,由图像可知,当时,的取值范围是或.【点睛】此题主要考察二次函数的应用.22、(1)72,图详见解析;(2).【分析】(1)先画出条形统计图,再求出圆心角即可;(2)先画出树状图,再求出概率即可.【详解】(1)条形统计图为;;扇形统计图中“优秀”所对应的扇形的圆心角是(1﹣15%﹣25%﹣40%)×360°=72°,故答案为:72;(2)画树状图:由树状图可知:所有等可能的结果有6种,其中符合条件的有2种,所有P(甲、丙)==,即选中的两名同学恰好是甲、丙的概率是.【点睛】本题考查了树状图、条形统计图和扇形统计图等知识点,能画出条形图和树状图是解此题的关键.23、y=x2-2x-3【分析】由于知道了顶点坐标是(1,-4),所以可设顶点式求解,即设y=a(x-1)2-4,然后把点(0,-3)代入即可求出系数a,从而求出解析式.【详解】解:设y=a(x-1)2-4,∵经过点(0,-3),∴-3=a(0-1)2-4,解得a=1∴二次函数表达式为y=x2-2x-324、(1)抛物线的解析式为;(2)抛物线存在点M,点M的坐标或或或【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)①当点M在x轴上方时,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣x2﹣x+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2,由勾股定理,得AC=,BC=,∵AC2+BC2=AB2,∴∠ACB=90°,当△ANM∽△ACB时,∠CAB=∠MAN,此时点M与点C重合,M(0,2).当△ANM∽△BCA时,∠MAN=∠ABC,此时M与C关于抛物线的对称轴对称,M(﹣3,2)/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024威海市国有企业劳动合同范本及实施细则2篇
- 《清初咏史组诗研究》
- 《清代黔东北经济开发研究(1644-1840年)》
- 2024年园林设施安装工程安全生产管理合同3篇
- 2024年02月江苏2024年苏州银行张家港支行招考(025)号笔试历年参考题库附带答案详解
- 焰火燃烧机理分析-洞察分析
- 影视音频版权保护技术-洞察分析
- 娱乐化传播现象分析-洞察分析
- 温病药理作用临床应用策略-洞察分析
- 新型辅料研发与应用-洞察分析
- 数控机床发展历史
- 2024年北京平谷区初三九年级上学期期末数学试题
- 公司控股公司的协议书范本
- 2024版固定资产的转让协议书
- 2024年1月国开电大法律事务专科《企业法务》期末考试试题及答案
- 2023-2024学年河北省保定市满城区八年级(上)期末英语试卷
- 2020-2024年安徽省初中学业水平考试中考历史试卷(5年真题+答案解析)
- 上海市虹口区2023-2024学年八年级下学期期末考试语文试题
- 2024合同范本之太平洋保险合同条款
- 万用表的使用
- 废气治理设施运行管理规程
评论
0/150
提交评论