




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元 B.8.45×103亿元 C.8.45×104亿元 D.84.5×102亿元2.把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是()A.y=-3 B.y=+3 C.y= D.y=3.如图,在平面直角坐标系中,将绕着旋转中心顺时针旋转,得到,则旋转中心的坐标为()A. B.C. D.4.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1: D.:15.已知二次函数y=a(x+1)2+b(a≠0)有最大值1,则a、b的大小关系为()A.a>b B.a<b C.a=b D.不能确定6.下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1) B.+-2=0C.ax2+bx+c=0 D.x2+2x=x2-17.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100° B.110° C.120° D.130°8.如图,AD是的一条角平分线,点E在AD上.若,,则与的面积比为()A.1:5 B.5:1 C.3:20 D.20:39.若x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,则1+a+b的值是()A.2017 B.2018 C.2019 D.202010.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学计数法将7.5忽米记为米,则正确的记法为()A.7.5×105米 B.0.75×106米 C.0.75×10-4米 D.11.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.12.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.9二、填空题(每题4分,共24分)13.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.14.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是,则黄球个数为__________.15.已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为_____度.16.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.17.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.18.已知实数在数轴上的位置如图所示,则化简__________.三、解答题(共78分)19.(8分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ=.(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.20.(8分)小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)21.(8分)一次函数分别与轴、轴交于点、.顶点为的抛物线经过点.(1)求抛物线的解析式;(2)点为第一象限抛物线上一动点.设点的横坐标为,的面积为.当为何值时,的值最大,并求的最大值;(3)在(2)的结论下,若点在轴上,为直角三角形,请直接写出点的坐标.22.(10分)如图1,在矩形中,为边上一点,.将沿翻折得到,的延长线交边于点,过点作交于点.(1)求证:;(2)如图2,连接分别交、于点、.若,探究与之间的数量关系.23.(10分)如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.24.(10分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.25.(12分)李师傅驾驶出租车匀速地从西安市送客到咸阳国际机场,全程约,设小汽车的行驶时间为(单位:),行驶速度为(单位:),且全程速度限定为不超过.(1)求关于的函数表达式;(2)李师傅上午点驾驶小汽车从西安市出发.需在分钟后将乘客送达咸阳国际机场,求小汽车行驶速度.26.如图,是的弦,于,交于,若,求的半径.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).8450一共4位,从而8450=8.45×2.故选B.考点:科学记数法.2、B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x2向上平移3个单位,∴平移后的抛物线的解析式为:y=x2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.3、C【分析】根据旋转的性质:对应点到旋转中心的距离相等,可知旋转中心一定在任何一对对应点所连线段的垂直平分线上,由图形可知,线段OC与BE的垂直平分线的交点即为所求.【详解】∵绕旋转中心顺时针旋转90°后得到,∴O、B的对应点分别是C、E,又∵线段OC的垂直平分线为y=1,线段BE是边长为2的正方形的对角线,其垂直平分线是另一条对角线所在的直线,由图形可知,线段OC与BE的垂直平分线的交点为(1,1).故选C.【点睛】本题考查了旋转的性质及垂直平分线的判定.4、A【解析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度.【详解】水平距离==4,则坡度为:1:4=1:1.故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比.5、B【解析】根据二次函数的性质得到a<0,b=1,然后对各选项进行判断.【详解】∵二次函数y=a(x-1)2+b(a≠0)有最大值1,∴a<0,b=1.∴a<b,故选B.【点睛】本题考查了二次函数的最值:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值6、A【分析】依据一元二次方程的定义判断即可.【详解】A.3(x+1)2=2(x+1)是一元二次方程,故A正确;B.+-2=0是分式方程,故B错误;C.当a=0时,方程ax2+bx+c=0不是一元二次方程,故C错误;D.x2+2x=x2-1,整理得2x=-1是一元一次方程,故D错误;故选A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.7、C【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、C【分析】根据已知条件先求得S△ABE:S△BED=3:2,再根据三角形相似求得S△ACD=S△ABE=S△BED,根据S△ABC=S△ABE+S△ACD+S△BED即可求得.【详解】解:∵AE:ED=3:2,
∴AE:AD=3:5,
∵∠ABE=∠C,∠BAE=∠CAD,
∴△ABE∽△ACD,
∴S△ABE:S△ACD=9:25,
∴S△ACD=S△ABE,
∵AE:ED=3:2,
∴S△ABE:S△BED=3:2,
∴S△ABE=S△BED,
∴S△ACD=S△ABE=S△BED,
∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,
∴S△BDE:S△ABC=3:20,
故选:C.【点睛】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.9、D【分析】根据x=-1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,可以得到a+b的值,从而可以求得所求式子的值.【详解】解:∵x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故选:D.【点睛】本题考查一元二次方程的解,解答本题的关键是明确题意,求出所求式子的值.10、D【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:7.5忽米用科学记数法表示7.5×10-5米.
故选D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B12、B【分析】连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12×=,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据题意利用相似三角形判定≌,并求出OC的值即有的最小值从而求解.【详解】解:如图∵∴≌∴∴点的路径是一段弧(以点为圆心的圆上)∴∴,∵∴∴所以的最小值【点睛】本题结合相似三角形相关性质考查最值问题,利用等边三角形以及勾股定理相关等进行分析求解.14、24【分析】根据概率公式,求出白球和黄球总数,再减去白球的个数,即可求解.【详解】12÷=36(个),36-12=24(个),答:黄球个数为24个.故答案是:24.【点睛】本题主要考查概率公式,掌握概率公式及其变形公式,是解题的关键.15、120【分析】利用扇形的面积公式:S=计算即可.【详解】设扇形的圆心角为n°.则有3π=,解得n=120,故答案为120【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.16、25【解析】试题解析:由题意17、3.1或4.32或4.2【解析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=•S△ABC=×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.18、【分析】根据数轴得出-1<a<0<1,根据二次根式的性质得出|a-1|-|a+1|,去掉绝对值符号合并同类项即可.【详解】∵从数轴可知:-1<a<0<1,
∴
=|a-1|-|a+1|
=-a+1-a-1
=-2a.
故答案为-2a.【点睛】此题考查二次根式的性质,绝对值以及数轴的应用,解题关键在于掌握利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.三、解答题(共78分)19、(1)2;(2)见解析;(3)存在,QP的值为或8或.【分析】(1)利用勾股定理求出AC,设HQ=x,根据构建方程即可解决问题;(2)利用对折与平行线的性质证明四边相等即可解决问题;(3)设AE=EM=FM=AF=2m,则BM=3m,FB=5m,构建方程求出m的值,分两种情形分别求解即可解决问题.【详解】解:(1)如图1中,在△ABC中,∵∠ACB=90°,AB=20,BC=1,∴AC==16,设HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,由对折得:∵∴×16×1=9××x×x,∴x=2或﹣2(舍弃),∴HQ=2,故答案为2.(2)如图2中,由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四边形AEMF是菱形.(3)如图3中,设AE=EM=FM=AF=2m,则BM=3m,FB=5m,∴2m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM=∵QH=2,AQ=,∴QC=,设PQ=x,当=时,,∴解得:,当=时,,∴解得:x=8或,经检验:x=8或是分式方程的解,且符合题意,综上所述,满足条件长QP的值为或8或.【点睛】本题考查的是三角形相似的判定与性质,菱形的判定与性质,轴对称的性质,锐角三角函数的应用,掌握以上知识是解题的关键.20、【分析】根据题意画出树状图,然后结合概率的计算公式求解即可.【详解】解:画树状图如下:由树状图可知,共有12种等可能结果,其中能围成三角形的结果共有10种,所以能搭成三角形的概率为=.【点睛】本题考查了三角形三条边的关系及概率的计算,,解题的关键是正确画出树状图,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.21、(1);(2)当时,的值最大,最大值为;(3)、、或【分析】(1)设抛物线的解析式为,代入点的坐标即可求解;(2)连接,可得点,根据一次函数得出点、的坐标,然后利用三角形面积公式得出的表达式,利用二次函数的表达式即可求解;(3)①当为直角边时,过点和点做垂线交轴于点和点,过点的垂线交轴于点,得出,再利用等腰直角三角形和坐标即可求解;②当为斜边时,设的中点为,以为圆心为直径做圆于轴于点和点,过点作轴,先得出和的值,再求出的值即可求解.【详解】解:(1)一次函数与轴交于点,则的坐标为.抛物线的顶点为,设抛物线解析式为.抛物线经过点,..抛物线解析式为;(2)解法一:连接.点为第一象限抛物线上一动点.点的横坐标为,.一次函数与轴交于点.则,的坐标为,.,,..当时,的值最大,最大值为;解法二:作轴,交于点.的坐标为,.点为第一象限抛物线上一动点.点的横坐标为,,...当时,的值最大,最大值为;解法三:作轴,交于点.一次函数与轴交于点.则,点为第一象限抛物线上一动点.点的横坐标为,.把代入,解得,..当时,的值最大,最大值为;解法四:构造矩形.(或构造梯形)一次函数与轴交于点.则,的坐标为,.点为第一象限抛物线上一动点.点的横坐标为,设点的纵坐标为,,,,,,,..当时,的值最大,最大值为;(3)由(2)易得点的坐标为,①当为直角边时,过点和点做垂线交轴于点和点,过点的垂线交轴于点,如下图所示:由点和点的坐标可知:∴∴∴点的坐标为由题可知:∴∴点的坐标为;②当为斜边时,设的中点为,以为圆心为直径做圆于轴于点和点,过点作轴,如下图所示:由点和点的坐标可得点的坐标是∴,∴∴点的坐标为,点的坐标为根据圆周角定理即可知道∴点和点符合要求∴综上所述点的坐标为、、或.【点睛】本题主要考察了待定系数法求抛物线解析式、一次函数、动点问题等,利用数形结合思想是关键.22、(1)详见解析;(2).【分析】(1)过点作于点,根据矩形的判定可得四边形和四边形是矩形,从而得出,,,然后证出,列出比例式,再利用等量代换即可得出结论;(2)设,则,先证出,可得,然后证出,可得,即可求出EF和AC的关系,从而求出与之间的数量关系.【详解】(1)证明:过点作于点,如图1所示:则四边形和四边形是矩形,∴,,,∵,∴,∴,∴,∴,∴,即;(2)解:∵,∴设,则,由(1)可知:,,∵,∴,∴,,∵,∴,∴,∴,根据翻折的性质可得∵DC∥AB,∠APB=90°∴+∠BPM=90°,∠PAM+∠PBM=90°∴∠BPM=∠PBM∴MP=MA,MP=MB∴,∴,∵,∴,∴,∴,∴,∴.【点睛】此题考查的是矩形的性质、相似三角形的判定及性质和折叠的性质,掌握矩形的性质、相似三角形的判定及性质和折叠的性质是解决此题的关键.23、1【分析】连接OB,OC,根据圆周角定理得到∠BOC=60°,根据等边三角形的性质即可得到结论.【详解】解:连接OB,OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OC=BC=4,∴⊙O的直径=1.【点睛】本题考查三角形的外接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级语文上册第一单元整体教学设计
- Unit 6 Lesson 36 Clean Cars2024-2025学年八年级英语上册同步教学设计(冀教版)河北专版
- 瑞士手表销售合同
- 装修用品租赁合同
- 《第一单元 图文处理与编排 第3课 编排文稿 二、绘制标题》教学设计教学反思-2023-2024学年初中信息技术人教版七年级上册
- 第四单元 大单元教学设计2024-2025学年七年级语文上册同步备课系列(统编版2024)
- 《匆匆》(教学设计)2023-2024学年统编版语文六年级下册
- 2025年职业技能发展中心教师合作合同
- 2025年建设项目合同法律适用与纠纷处理
- 2025年事业单位食堂餐饮服务合同格式
- 《人工智能导论》(第2版)高职全套教学课件
- 39 《出师表》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 蛇胆川贝液在动物模型中的药理作用研究
- GB/T 44260-2024虚拟电厂资源配置与评估技术规范
- 中国煤炭地质总局公开招聘报名表
- AQ 1064-2008 煤矿用防爆柴油机无轨胶轮车安全使用规范(正式版)
- 电子商务数据分析基础(第二版) 课件 模块1、2 电子商务数据分析概述、基础数据采集
- YB-T+4190-2018工程用机编钢丝网及组合体
- 高大模板安全施工施工安全保证措施
- 比亚迪公司应收账款管理的问题及对策分析
- 【高考真题】2024年新课标全国Ⅱ卷高考语文真题试卷(含答案)
评论
0/150
提交评论