求解共点力平衡问题的十一种方法(附详细答案)_第1页
求解共点力平衡问题的十一种方法(附详细答案)_第2页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE7/NUMPAGES7求解共点力平衡问题的十一种方法(附详细答案)求解共点力平衡问题的十一种方法

共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。一、力的合成法物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反;

1.(2008年·广东卷)如图所示,质量为m的物体悬挂在轻质支架上,斜梁OB与竖直方向的夹角为θ(A、B点可以自由转动)。设水平横梁OA和斜梁OB作用于O点的弹力分别为F1和F2,以下结果正确的是()

A.F1=mgsinθ

B.F1=sinmgq

C.F2=mgcosθ

D.F2=cosmgq

二、力的分解法在实际问题中,一般根据力产生的实际作用效果分解。

2、如图所示,在倾角为θ的斜面上,放一质量为m的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少?

3.如图所示,质量为m的球放在倾角为α的光滑斜面上,试分析挡板AO与斜面间的倾角β多大时,AO所受压力最小。

三、正交分解法解多个共点力作用下物体平衡问题的方法

物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:0xF=合,0

yF=合.

为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则

.

θ

4、如图所示,重力为500N的人通过跨过定滑轮的轻绳牵引重200N的物体,当绳与水平面成60°

角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。

四、相似三角形法根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解.

5、固定在水平面上的光滑半球半径为R,球心0的正上方C处固定一个小定滑轮,细线一端拴一小球置于半球面上A点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A点拉向B点,则此过程中小球对半球的压力大小NF、细线的拉力大小TF的变化情况是()

A、NF不变、TF不变B.NF不变、TF变大C,

NF不变、TF变小D.NF变大、TF变小

6、两根长度相等的轻绳下端悬挂一质量为m物体,上端分别固定在天花板M、N两点,M、N之间距离为S,如图所示。已知两绳所能承受的最大拉力均为T,则每根绳长度不得短于____。

五、用图解法处理动态平衡问题

对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断.

7、如图4甲,细绳AO、BO等长且共同悬一物,A点固定不动,在手持B点沿圆弧向C点缓慢移动过程中,绳BO的张力将()

A、不断变大

B、不断变小

C、先变大再变小

D、先变小再变大六.矢量三角形在力的静态平衡问题中的应用

若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G,斜面的倾角为θ,求下列情况

下小球对斜面和挡板的压力?(1)、挡板竖直放置(2)、挡板与斜面垂直

七、对称法

研究对象所受力若具有对称性,则求解时可把较复杂的运算转化为较简单的运算,或者将复杂的图形转化为直观而简单的图形.所以在分析问题时,首先应明确物体受力是否具有对称性.9、如图10甲所示,重为G的均匀链条挂在等高的两钩上,链条悬挂处与水平方向成角,试求;(1)链条两端的张力大小.(2)链条最低处的张力大小.

八、整体法与隔离法

通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。

10、有一直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略,不何伸长的细绳相连,并在某一位置平衡,如图所示,现将P环向左移一小段距离,两环再将达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力NF和细绳拉力TF的变化情况是:()A、NF不变、TF变大B、NF不变、TF变小C、NF变大、TF变大

D、NF变大、TF变小

11、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放

有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块()

A.有摩擦力作用,摩擦力的方向水平向右

B.有摩擦力作用,摩擦力的方向水平向左

C.有摩擦力作用,但摩擦力的方向不能确定

D.没有摩擦力的作用

b

ca

m1m2

θ

θ

九、正弦定理法正弦定理:在同一个三角形中,三角形的边长与所对角

的正弦比值相等;在中有

sinsinsinABBCCAC

A

B

=

=

同样,在力的三角形中也满足上

述关系,即力的大小与所对角的正弦比值相等.

12、不可伸长的轻细绳AO、BO的结点为0,在0点悬吊电灯L,OA绳处于水平,电

灯L静止,如图所示,保持0点位置不变,改变OA的长度使A点逐渐上升至C点,在此过程中绳OA的拉力大小如何变化?

十.拉密原理法

拉密原理:如果在三个共点力作用下物体处于平衡状态,那么各力的大小分别与另外两个力所夹角的正弦成正比.在图8所示情况下,原理表达式为

3121

2

3

sinsinsinFFFθθθ=

=

13、如图9甲所示装置,两根细绳拉住一个小球,保持两绳之间夹角θ不变;若把整个装置顺时针缓慢转动0

90,则在转动过程中,CA绳拉力1TF大小的变化情况是,CB绳拉力2TF大小的变化情况是.

十一.解析法:求共点力作用下物体平衡的极值问题的方法

根据物体的平衡条件列方程,在解方程时采用数学知识求极值。通常我们会用到的数学知识有:二次函数极值、均分定理求极值、讨论分式极值、三角函数极值以及几何法求极值14、重为G的木块与水平地面间的动摩擦因数为μ,一人欲用最小的力F使得木块做匀速运动,则此最小作用力的大小和方向如何?

N1

N2

θ

N2

N1,

mg

第三章相互作用专题练习(一)参考答案

求解共点力平衡问题的常见方法

1.【解析】根据三力平衡特点,任意两个力的合力与第三个力等大反向,可作出如图所示矢量图,由三角形知识可得F1=mgtanθ,F2=mg/cosθ,故D正确,A、B、C错误。

2.【解析】小球受到重力mg、斜面的支持力N1、竖直木板的支持力N2的作用.将重力mg沿N1、

N2反方向进行分解,分解为N1,、N2,

,如图所示.由平衡条件得:N1=N1,

=mg/cosθN2=N2,

=mgtanθ.

3.【解析】当挡板与斜面的夹角β由图示位置变化时,FN1大小改变,但方向不变,始终与斜面垂直;FN2的大小、方向均改变(图中画出一系列虚线表示变化的FN2)。由图可看出,当FN2与FN1垂直即β=90°时,挡板AO所受压力最小,最小压力FN2min=mgsinα。

4、【解析】人和重物静止,所受合力皆为零,对物分析得到,绳拉力F等于物重200N;人受四个力作用,将绳的拉力分解,即可求解。如图所示,将绳的拉力分解得

水平分力:Fx=Fcos60°=200×N=100N

竖直分力:Fy=Fsin60°=200×N=100N

在x轴上,F′与Fx二力平衡,所以静摩擦力F′=Fx=100N

在y轴上,三力平衡得地面对人支持力FN=G-Fy=(500-

100)N=100

(5-)N

5、解析小球受力如图5乙所示,根据平衡条件知,小球所受支持力'NF和

G

θN2

N1

G

N2

N1

G

N1

N2

G

N2

N1

θ

细线拉力TF的合力F跟重力是一对平衡力,即FG=.根据几何关系知,力三角形'

NFAF与几何三角形COA相似.设滑轮到半球顶点B的距离为h,线长AC为L,则有

'NTFFGR

Rh

L

=

=

+,由于小球从

A点移向

B点的过程中,GRh、、均不变,L减小,故'

NF大小不变,TF减小.所以正确答案为C选项.

6、分析:绳子越短,两条绳夹角越大,绳子张力越大。对图3作辅助线OE⊥MN,对D点受力分析如图所示,∵△DBC∽△ONE,

,其中

7、解析选0点为研究对象,受F、AF、BF三力作用而平衡,此三力构成一封闭的动态三角形如图4乙.容易看出,当BF与AF垂直即0

90αβ+=时,BF取最小值,所以D选项正确.

8、分析与解答:小球受力如图所示,小球在重力、斜面的支持力和挡板的支持力三个力共同的作用下处于平衡状态,因其中两力之和恰好与第三力大小相等方向相反,故这三个力可构成力的三角形,由矢量三角形的边角关系可知:

当挡板竖直放置时:N1=GtgθN

2=G/cosθ当挡板与斜面垂直放置时:N1=GsinθN2=Gcosθ

这样比我们建立直角坐标,再利用正交分解法来求解就简单多了。

9、解析(1)在求链条两端的张力时,可把链条当做一个质点处理.两边受力具有对称性使两端点的张力F大小相等,受力分析如图10乙所示.取链条整体为质点研究对象.由平衡条件得竖直方向

2Fsin=Gθ,所以端点张力为G

F=

2sinθ

(2)在求链条最低点张力时,可将链条一分为二,取一半研究,受力分析如图10丙所示,由平衡条件得水平方向所受力为

'coscoscot2sin2

GGFFθθθθ

==

=

即为所求.

10、解析采取先“整体”后“隔离”的方法.以P、Q、绳为整体研究对象,受重力、AO给的向上弹力、OB给的水平向左弹力.由整体处于平衡状态知AO给P向右静摩擦力与OB给的水平向左弹力大小相等;AO给的竖直向上弹力与整体重力大小相等.当P环左移一段

距离后,整体重力不变,AO给的竖直向上弹力也不变.再以Q环为隔离研究对象,受力如图3乙所示,Q环所受重力G、OB给Q弹力F、绳的拉力TF处于平衡,P环向左移动一小段距离的同时TF移至'

TF位置,仍能平衡,即

TF竖直分量与G大小相等,TF应变小,所以正确答案为B选项.

11、【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D.

12、解析取0点为研究对象,0点受灯的拉力F(大小等于电灯重力G)、OA绳的拉力1T、OB绳的拉力2T,如图7乙所示.因为三力平衡,所以1T、2T的合力'G与G等大反向.由正弦定理得

1sinsinTGθ

α

=

,即1sinsinGTθα

=

,由图知θ不变,α

由小变大,α增大到0

90后再减小,所以据1T式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论