版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本不等式(1)1.课题导入
如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。ICM2002会标赵爽:弦图你能在这个图案中找出一些相等关系或不等关系吗?ADBCEFGHabABCDE(FGH)ab当且仅当a=b时,等号成立。不等式:一般地,对于任意实数a、b,我们有二.讲授新课一般的,如果
1.重要不等式你能给出它的证明吗?如果a>0,b>0,
那么2.基本不等式ⅰ)我们称的算术平均数,称的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.ⅱ)成立的条件是不同的:前者只要求a,b都是实数,而后者要求a,b都是正数.在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式的几何解释吗?3.基本不等式的几何意义ABEDCabo基本不等式的一种几何解释
基本不等式的一种几何解释
4.随堂练习
当且仅当a=12三.课堂小结1.两个不等式2.两个变形3.两种思想:数形结合的思想;转化的思想
基本不等式(2)(1)如果a,b是正数,那么
(当且仅当a=b时取“=”号)基本不等式:一.复习回忆(2).两个变形应用:解决最大(小)值问题例1、(1)用篱笆围一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短篱笆是多少?(2)一段长为36m的篱笆围成一矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?反思:由此题我们可以得到什么启示呢?结论:(1)两个正数积为定值,和有最小值。(2)两个正数和为定值,积有最大值。如果a,b是正数,那么
(当且仅当a=b时取“=”号)应用:“和定积最大,积定和最小”.剖析:利用基本不等式解决最值问题应用要点:一正,二定,三等正:两项必须都是正数;
定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。等:等号成立的条件必须存在.例1、
例2、判断正误(1)函数的最小值为2
(2)函数的最小值为2利用均值不等式求最值应注意三点:
一正,二定,三等练习1:2.已知m、n都是正数,且2m+n=3,求mn的最大值
21课堂小结:
1.利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工程大学项目采购购销合同书
- 2025公司转让合同协议版
- 2025含竞业禁止条款的劳动合同
- 老年人视角下的家庭医疗辅助设备评价
- 提升客户体验-实现销售增长的秘密武器
- 2024年户外机柜温控节能项目投资申请报告代可行性研究报告
- 游戏化教学法在小学数学中的推广与应用
- 教育领域中的小学数学思维训练研究
- 小学数学与逻辑思维培养
- 2024-2025学年度第一学期期末考试八年级历史试卷
- 2025-2030年中国草莓市场竞争格局及发展趋势分析报告
- 第二章《有理数的运算》单元备课教学实录2024-2025学年人教版数学七年级上册
- 华为智慧园区解决方案介绍
- 奕成玻璃基板先进封装中试线项目环评报告表
- 广西壮族自治区房屋建筑和市政基础设施全过程工程咨询服务招标文件范本(2020年版)修订版
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
- 2024新版有限空间作业安全大培训
- GB/T 44304-2024精细陶瓷室温断裂阻力试验方法压痕(IF)法
- 年度董事会工作计划
- 《退休不褪色余热亦生辉》学校退休教师欢送会
- 02R112拱顶油罐图集
评论
0/150
提交评论