直线与平面平行的判定 省赛获奖-完整版课件_第1页
直线与平面平行的判定 省赛获奖-完整版课件_第2页
直线与平面平行的判定 省赛获奖-完整版课件_第3页
直线与平面平行的判定 省赛获奖-完整版课件_第4页
直线与平面平行的判定 省赛获奖-完整版课件_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.1直线与平面平行的判定新课导入(1)直线在平面内:(2)直线在平面外:①直线a和面α相交:a∩α=Aaaa②直线a和面α平行:a//α我们已经学习了直线与平面的位置关系:

在直线与平面的关系中,平行时一种非常重要的关系,它应用很多,而且是学习面与面平行的基础。如何判定直线与平面平行呢?

可以根据定义判定直线与平面是否平行,即判定直线与平面是否有公共点。

但是,直线无限延长,平面无限延展,用定义判定直线与平面平行的可行性不大。实例观察:问题2:将课本的一边紧贴桌面,转动课本,课本的上边缘与桌面的关系如何呢?问题1:把门打开,门上靠近把手的边与门所在的墙面有何关系?观察

(1)把门打开,门上靠近把手的边与门所在的墙面有何关系?

门上靠近把手的边AB总与另一边A1B1平行,AB所在直线平行于墙面。

(2)将课本的一边紧贴桌面,转动课本,课本的上边缘与桌面的关系如何呢?

书页无论怎样翻动,书页边缘AB总与另一边CD平行,AB与桌面不可能相交,所以AB所在直线平行于桌面所在平面。平面α外有直线a平行于平面α内的直线l。(1)这两条直线共面吗?(2)直线a与平面α相交吗?共面不可能相交探究直线和平面平行的判定定理:

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。符号表示:定理证明简述为:线线平行,则线面平行证明:∴经过a,b确定一个平面β∴α,β是两个不同的平面abpαβ∵a//b,假设α与β有公共点P则,点P是a与b的公共点,这与a//b矛盾。∴a//α注意:使用定理时,必须具备三个条件:(1)直线a在平面α外,(2)直线b在平面α内,(3)两条直线a、b平行。

三个条件缺一不可,缺少其中任何一条,则结论就不一定成立了。(1)若直线a不在平面α外,即a在平面α内a//α吗?思考ab缺少条件1,显然不成立。(2)若直线b不在平面α内,a//吗?ab缺少条件2,定理也不成立。(3)若直线a不平行于直线b,a//吗?缺少条件3,定理也不成立。ab

求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.

已知:空间四边形ABCD中,E,F分别AB,AD的中点。求证:EF//平面BCD。证明:连接BD。因为AE=EB,AF=FD,所以EF//BD(三角形中位线的性质)因为

由直线与平面平行的判断定理得:EF//平面BCD。例一

如图,四面体ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点。BCADEFGH(3)你能说出图中满足线面平行位置关系的所有情况吗?(1)E、F、G、H四点是否共面?(2)判断AC与平面EFGH的位置关系。例二解:(1)E、F、G、H四点共面。∵在△ABD中,E、H分别是AB、AD的中点。∴EH∥BD且同理GF∥BD且EH∥GF且EH=GF∴E、F、G、H四点共面。BCADEFGH(2)AC∥平面EFGH(3)由EF∥HG∥AC,得EF∥平面ACDAC∥平面EFGHHG∥平面ABC由BD∥EH∥FG,得BD∥平面EFGHEH∥平面BCDFG∥平面ABDBCADEFGH应用判定定理判定线面平行的关键是找平行线。方法一:三角形的中位线定理。方法二:平行四边形的平行关系。总结数学思想方法:转化的思想空间问题平面问题课堂小结证明直线与平面平行的方法:(1)利用定义:(2)利用判定定理:线线平行线面平行直线与平面没有公共点应用判定定理判定线面平行时应注意六个字:(1)面外(2)面内(3)平行随堂练习

2.直线a∥平面α,平面α内有无数条直线交于一点,那么这无数条直线中与直线a平行的()A.至少有一条B.至多有一条C.有且只有一条D.不可能有CB

1.直线a∥平面α,平面α内有n条互相平行的直线,那么这n条直线和直线a()A.全平行B.全异面C.全平行或全异面D.不全平行也不全异面3.下列命题是否正确,并说明理由(1)过平面外一点有无数条直线与这个平面平行()(2)过直线外一点可以作无数个平面与已知直线平行()4.如图,在三棱柱ABC—A1B1C1中,D是AC的中点.求证:AB1//平面DBC1P

5.如图,正方体

中,P是棱A1B1的中点,过点P画一条直线使之与截面A1BCD1平行。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论