SPSS探索性因子分析的过程_第1页
SPSS探索性因子分析的过程_第2页
SPSS探索性因子分析的过程_第3页
SPSS探索性因子分析的过程_第4页
SPSS探索性因子分析的过程_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

现要对远程学习者对教育技术资源和使用情况进行了解,设计一个李克特量表,如下图所示:之南宫帮珍创作题项从未使用很少使用有时使用经常使用总是使用创作时12345问题al电脑a2录音磁带a3录像带a4网上资料a5校园网或因特网a6电子邮件a7电子讨论网a8CAI课件a9视频会议a10视听会议.因子分析的界说在现实研究过程中,往往需要对所反映事物、现象从多个角度进行观测.因此研究者往往设计出多个观测变量,从多个变量收集年夜量数据以便进行分析寻找规律.多变量年夜样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据收集和处置的难度.更重要的是许多变量之间存在一定的相关关系,招致了信息的重叠现象,从而增加了问题分析的复杂性.因子分析是将现实生活中众多相关、重叠的信息进行合并和

综合,将原始的多个变量和指标酿成较少的几个综合变量和综合

指标,以利于分析判定.用较少的综合指标分析存在于各变量中的

各类信息,而各综合指标之间彼此是不相关的,代表各类信息的

综合指标成为因子.因子分析就是用少数几个因子来描述许多指标

之间的联系,以较少几个因子反应原资料的年夜部份信息的统计

创作时间:二零二一年六月三十日方法二.数学模型Zi为第i个变量的标准化分数;(标准分是一种由原始分推导出来的相对位置量数,它是用来说明原始分在所属的那批分数中的相对位置的.)Fm为共同因子;m为所有变量共同因子的数目;Ui为变量Zi的唯一因素;aim为因子负荷.(也叫因子载荷,统计意义就是第i个变量与第m个公共因子的相关系数,它反映了第i个变量在第m个公共因子上的相对重要性也就是第m个共同因子对第i个变量的解释水平.)因子分析的理想情况,在于个别因子负荷aim不是很年夜就是很小,这样每个变量才华与较少的共同因子发生密切关联,如果想要以最少的共同因素数来解释变量间的关系水平,则Ui彼其间不能有关联存在.所谓的因子负荷就是因子结构中原始变量与因子分析时抽取出共同因子的相关,即在各个因子变量不相关的情况下,因子负荷aim就是第i个原有变量和第m个因子变量间的相关系数,也就是Z.在第m个共同因子变量上的相对重要性,因此,%绝对值越年夜则公共因子和原有变量关系越强.在因子分析中有两个重要指针:一为“共同性”,二为“特征值”.所为共同性,也称变量共同度或者公共方差,就是每个变量在每个共同因子的负荷量的平方总和(一横列中所有因子负荷的的平方和),也就是个别变量可以被共同因子解释的变异量百分比,这个值是个别变量与共同因子间多元相关的平方.从共同性的年夜小可以判断这个原始变量与共同因子间的关系水平.如果年夜部份变量的共同度都高于0.8,则说明提取出的共同因子已经基本反映了各原始变量80%以上的信息,仅有较少的信息丧失,因子分析效果较好.而各变量的唯一因素就是1减失落该变量共同性的值,就是原有变量不能被因子变量所能解释的部份.所谓特征值,是每个变量在某一共同因子的因子负荷的平方总和(一直行所有因子负荷的平方和),在因子分析的的共同因子抽取中,特征值最年夜的共同因子会最先被抽取,其次是次年夜者,最后抽取的共同因子的特征值会最小,通常会接近于0.将每个共同因子的特征值除以总题数,为此共同因子可以解释的变异量,因子分析的目的之一,即在因素结构的简单化,希望以最少的共同因子能对总变异量做最年夜的解释,因而抽取的因素越少越好,但抽取的因子的累积变异量越年夜越好.三.SPSS中实现过程(一)录入数据(二)因子分析“分析”|“降维”|“因子分析”选项卡,翻开如图所示“因子分析”对话框.从原变量量表中选择需要进行因子分析的变量,然后单击箭头按钮将选中的变量选入“变量”列表中.“变量列表”的变量为要进行因子分析的的目标变量,变量在区间或比率级别应该是定量变量.分类数据(如:性别等)不适合因子分析.“描述按钮”:主要设定对原始变量的基本描述并对原始变量进行相关性分析.选中“原始分析结果”复选框,暗示因子分析未转轴前之共同性、特征值、变异数百分比及累积百分比,这是一个中间结果,对主成分分析来说,这些值是要进行分析变量的相关或协方差矩阵的对角元素.KMO与Bartlett球形度检验用来检验适不适合用来做因子分析.KMO检验,检验变量间的偏相关是否很小;巴特利特球形检验,检验相关阵是否是单元阵.KMO值越接近1越适合做因子分析,巴特利特检验的原假设设为相关矩阵为单元阵,如果Sig值拒绝原假设暗示变量间存在相关关系,因此适合做因子分析.“抽取”按钮:主要设定提取公共因子的方法和公共因子的个数.方法:主成分分析法.SPSS默认方法.该方法假定原变量是因子变量的线性组合,第一主成分有最年夜的方差,后续成分可解释的方差越来越少.这是使用最多的因子提取方法.分析:相关性矩阵.暗示以相关性矩阵作为提取公共因子的依据,当分析中使用分歧的标准丈量变量时比力适合.输出:未旋转的因子解.显示未旋转时因子负荷量、特征值及共同性.碎石图.暗示输出与每个因子相关联的特征值的图,该图用于确定应坚持的因子个数,通常该图显示年夜因子的峻峭斜率和剩余因子平缓的尾部之间明显的中断.按特征值年夜小排列,有助于确定保管几多个因子.抽取:基于特征值.暗示抽取特征值超越指定值的所有因子,在“特征值年夜于”输入框中指定值,一般为1.旋转:用于设定因子旋转的方法.旋转的目的是为了简化结构,以帮手解释因子SPSS默认不旋转.方法:最年夜方差法:是一种正交旋转方法,他使得对每个因子有高负载的变量的数目到达最小,并简化了因子的解释.输出:旋转解.该复选框只有在选择里旋转方法之后才华选择,对正交旋转会显示已旋转的模式矩阵和因子变换矩阵.得分:用于对因子得分进行设置,即计算因子得分.取默认值,单击继续按钮.选项:用于设定对变量缺失值的处置和系数显示的格式.缺失值:按列表排除个案.去除所有含缺失值的个案后再进行分析系数显示格式:按年夜小排列.载荷系数依照数值的年夜小排列,并构成矩阵,使得在同一因子上具有较高载荷的变量的排列在一起,便于获得结论.(三)结果分析KMO及Bartlett'检验当KMO值愈年夜时,暗示变量间的共同因子愈多,愈适合进行因子分析,根据专家观点,如果KMO的值小于0.5时,较不宜进行因子分析,此处的KMO值为0.695,暗示适合因子分析.另外Bartkett's球形检验的原假设为相关系数矩阵为单元阵,Sig值为0.000小于显著水平0.05,因此拒绝虚无假设,说明变量之间存在相关关系,适合做因子分析.(Bartkett's球形检验的2为234.438,自由度为45,到达显著,代表母群体的相关矩阵间有共同因子存在,适合进行因子分析.)共同性,显示因子间的共同性结果.在主成分分析中,有几多个原始变量便有几多个成分,所以共同性会即是1,没有唯一因素.所以本结果中间一栏显示初试共同性都为1,则暗示抽取方法为主成分分析法,最右一栏为题项的共同性.从该表可以获得,因子分析的变量共同度都非常高,标明变量中的年夜部份信息均能够被因子所提取,说明因子分析的结果是有效的.整体解释的变异数 旋转之前的数据.该表给出了因子贡献率的结果,表中左侧部份为初始特征值,中间为提取主因子结果,右侧为旋转后的主因子结果.“合计”指因子的特征值,“方差的%”暗示该因子的特征值占总特征值百分比“累积%”一10=63.579%.其中自有前三个因子的特征值年夜于1,而且前三个因子的特征值之和占总特征值的89.366%,因此提取前三个因子作为主因子列于右边,这也是因子分析时所抽出的公共因子数.由于特征值是由年夜到小排列,所以第一个公同因子的解释变异量通常是最年夜者,其次是第二个1.547,再是第三个1.032.旋转后的特征值为4.389,3.137,1,411,解释变异量为43.885%,31.372%,14.108%,累积的解释变异量为43.885%,75.257%,89.366%.旋转后的特征值分歧于转轴前的特征值.碎石图.特征值的碎石图.通常该图显示年夜因子的峻峭斜率和剩余因子平缓的尾部,之间有明显的中断.一般取主因子在非常峻峭的斜率上,而处在平缓斜率上的因子对变异的解释非常小.可以从此碎石图中看出,从第三个因素以后,坡线甚为平坦,因而可以保管3个因素较为适宜.成分矩阵:给出了未旋转的因子载荷.从该表中可以获得利用主成分分析方法提取的三个因子的载荷量,其中因子负荷量小于0.1的未被显示,因子为了方便解释因子含义,需要进行因子旋转.旋转成分矩阵:给出了旋转后的因子载荷值,其中旋转方法采纳的是Kaiser标准化的正交旋转法.通过因子旋转,各个因子有了比力明确的含义.从图中可以看出:a1,a&a6,a5,a4位因子1,al0,a9,a7为因子2,a3,a2为因子3.题项在其所属的因子层面顺序是依照因子负荷量的高低排列的.成分转换矩阵:六.结果说明根据因子的特征值和旋转后的因子矩阵,采纳了主成分分析法抽取出3个因子作为共同因子,并使用因子旋转方法中的最年夜方差法,依照从年夜到小的顺序进行排列,使得变量与因子的关系豁然明了,对其做如下表所示的因子分析摘要表题项解释变异量累积解释变异量抽取的因子因子1负-J-H口.荷量因子2负-J-H口.荷量因子3负-J-H口.荷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论