2019年2001-年江苏专转本高等数学真题_第1页
2019年2001-年江苏专转本高等数学真题_第2页
2019年2001-年江苏专转本高等数学真题_第3页
2019年2001-年江苏专转本高等数学真题_第4页
2019年2001-年江苏专转本高等数学真题_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6644-2x24、证令f(x)二4xInx—x2—2x+3,贝yf'(x)二4lnx—2x+2,f"(x)=-2=,xx由于当1<x<2时,f''(x)>0,故函数f'(x)在[1,2)上单调增加,从而当1<x<2时f'(x)>f'(1)二0,于是函数f(x)在[1,2)上单调增加,从而当1<x<2时,f(x)>f(1)二0,即当1<x<2时,4xlnx>x2+2x-32010年江苏省普通高校“专转本”统一考试高等数学参考答案1、A2、C3、B4、D5、D7、兀e28、29>-1、A2、C3、B4、D5、D7、兀e28、29>-210、—413x-tanx、原式=lim:x-tanx=limx—0x2tanxxtOx36、C14、11、dx+2dy12、(-1,1]1-sec2x-tan2x_lim_limxto3x2x—03x29ex+ydx1+ex+ydx2(1+ex+y)3dy+ex+y(1+空)=2,dy二2-ex+y;d2ydxdxdx15、111原式=—x2arctanx-x+arctanx+C.22216、112—1变量替换:令*:2x+1_t,x_—,dx_tdt,t2-1+3原式_J3—2-1dt_J3(+)dt_(]t3+t)1t1226217、n=(1,2,3),n=(2,0,—1),n=nxn=1212x-1y-1z-1所求直线方程为__—-27-418、Z_y2(f'y+f'ex);—Qx12八QxOy20、二(-2,7,-4),_3y2f'+2exyf'+xy3f''+xy2exf''121112JJxdxdy_J0dyJ1—y2xdx_20y6特征方程的两个根为r1=h丁-2,特征方程为r2+r-2二0,从而p二1,q=-2;3=1是特征方程的单根,p(x)=1,可设Q(x)=Ax,即设特解为Y=Axex,Y'=Aex+Axex,Y”=2Aex+Axex,p=1,q=—2,代入方程y"+py'+qy=ex得11(2A+Ax+A+Ax—2A)ex=ex,3A=1,A=—,通解为y=Cex+Ce-2x+x31—1—1>0,f'(x)在(1,+s)21、构造函数f(x)=ex-1一-x2一-,f'(x)=ex-1—x,f”(x)=ex-1上单调递增,f'(1)=0,f'(x)>0,f(x)在(1,+s)上单调递增,f(1)=0,f(x)>0,即11ex—1>x2+。2222、limf(x)=lim9(x)xtOxtOx=lim=9'(0)=1=f(0),连续性得证;xtOx-09(x)一1I9(x)—x=lim」=limxtOxxtOx2f'(0)=limf(x)-f(0)xtOx一011=-lim9''(x)=-9''(0),可导性得证。2xtO2a423、V(a)二兀Ja[(a2)2一(x2)2]dx=Ka5,105114V(a)二兀J1[(x2)2一(a2)2]dx=(—一a4+a5)兀,2a5518V(a)=V(a)+V(a)=(—一a4+a5)k,1255=lim空口xtO2x=1lim9'(x)一9'(0)2xtOx一0V'(a)=(8a4—4a3)“,令V'(a)=0得a=1,最小值为V(|)=3——兀1624、f(x)=e」dx(J2exe‘dxdx+C)=e-x(e2x+C)=ex+Ce-x,f(0)=2,C=1,f(x)=ex+e—x,f'(x)=ex—e—x,f'(x)ex—e-xe2x—1e2x+1—22y=====1—f(x)ex+e—xe2x+1e2x+1e2x+1A(t)=Jt(1-(1-2))dx=Jt2dx=Jte2x+1/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论