版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.2.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.23.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.4.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A. B. C. D.5.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.46.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势7.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣128.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.9.设,则()A. B. C. D.10.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.11.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.12.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则的最小值为________.14.已知函数,,若函数有3个不同的零点x1,x2,x3(x1<x2<x3),则的取值范围是_________.15.若变量x,y满足:,且满足,则参数t的取值范围为_______.16.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.18.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.19.(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;平均车速超过的人数平均车速不超过的人数合计男性驾驶员女性驾驶员合计(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.参考公式:其中临界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82820.(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.21.(12分)在中,为边上一点,,.(1)求;(2)若,,求.22.(10分)已知点到抛物线C:y1=1px准线的距离为1.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.2、D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.3、C【解析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.4、A【解析】
由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率.弦过焦点时,可结合焦半径公式求解弦长.5、C【解析】
方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.6、D【解析】
根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【点睛】本题考查了折线图,意在考查学生的理解能力.7、D【解析】
分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【详解】设,联立则,因为直线经过C的焦点,所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。8、D【解析】
由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【详解】解:,即,即.,则.,解得.,故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.9、C【解析】试题分析:,.故C正确.考点:复合函数求值.10、B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:
直三棱柱的体积为,消去的三棱锥的体积为,
∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.11、B【解析】
通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.12、A【解析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。14、【解析】
先根据题意,求出的解得或,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3(x1<x2<x3),分情况讨论求出的取值范围.【详解】解:令t=f(x),函数有3个不同的零点,即+m=0有两个不同的解,解之得即或因为的导函数,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)递增,在递减;f(x)的最大值为,且且f(1)=0;要使函数有3个不同的零点,(1)有两个不同的解,此时有一个解;(2)有两个不同的解,此时有一个解当有两个不同的解,此时有一个解,此时,不符合题意;或是不符合题意;所以只能是解得,此时=-m,此时有两个不同的解,此时有一个解此时,不符合题意;或是不符合题意;所以只能是解得,此时=,综上:的取值范围是故答案为【点睛】本题主要考查了函数与导函数的综合,考查到了函数的零点,导函数的应用,以及数形结合的思想、分类讨论的思想,属于综合性极强的题目,属于难题.15、【解析】
根据变量x,y满足:,画出可行域,由,解得直线过定点,直线绕定点旋转与可行域有交点即可,再结合图象利用斜率求解.【详解】由变量x,y满足:,画出可行域如图所示阴影部分,由,整理得,由,解得,所以直线过定点,由,解得,由,解得,要使,则与可行域有交点,当时,满足条件,当时,直线得斜率应该不小于AC,而不大于AB,即或,解得,且,综上:参数t的取值范围为.故答案为:【点睛】本题主要考查线性规划的应用,还考查了转化运算求解的能力,属于中档题.16、【解析】
由已知可得、的坐标,求得的垂直平分线方程,联立已知直线方程与椭圆方程,求得的垂直平分线方程,两垂直平分线方程联立求得外心的横坐标,再由导数求最值.【详解】如图,由已知条件可知,不妨设,则外心在的垂直平分线上,即在直线,也就是在直线上,联立,得或,的中点坐标为,则的垂直平分线方程为,把代入上式,得,令,则,由,得(舍)或.当时,,当时,.当时,函数取极大值,亦为最大值.故答案为:.【点睛】本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②证明见解析.【解析】
(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)①若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;②当,,,由等比数列的定义和不等式的性质,化简变形,即可得到所求结论.【详解】解:(1),,且为非零常数,,,可得,可得数列的首项为,公差为的等差数列,可得,前项和为;(2)①若,可令,,且,即,,,,对任意的,,可得,可得,,数列是等比数列,则,,可得,,即,又,即有,即,数列是等比数列的充要条件为;②证明:对任意的,,,,,当,,,可得,即以为首项、为公比的等比数列;同理可得以为首项、为公比的等比数列;对任意的,,可得,即有,所以对,,,可得,,即且,则,可令,故数列,,,,,,,,,是以为首项,为公比的等比数列,其中.【点睛】本题考查新定义的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法和推理、运算能力,属于难题.18、(1)单调递增区间为,单调递减区间为;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.19、(1)填表见解析;有的把握认为,平均车速超过与性别有关(2)详见解析【解析】
(1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为,平均车速超过与性别有关.(2)利用二项分布的知识计算出分布列和数学期望.【详解】(1)平均车速超过的人数平均车速不超过的人数合计男性驾驶员301040女性驾驶员51520合计352560因为,,所以有的把握认为,平均车速超过与性别有关.(2)服从,即,.所以的分布列如下0123的期望【点睛】本小题主要考查列联表独立性检验,考查二项分布分布列和数学期望,属于中档题.20、(1);(2).【解析】
(1)根据题意得到GB是线段的中垂线,从而为定值,根据椭圆定义可知点G的轨迹是以M,N为焦点的椭圆,即可求出曲线C的方程;(2)联立直线方程和椭圆方程,表示处的面积代入韦达定理化简即可求范围.【详解】(1)为的中点,且是线段的中垂线,,又,∴点G的轨迹是以M,N为焦点的椭圆,设椭圆方程为(),则,,,所以曲线C的方程为.(2)设直线l:(),由消去y,可得.因为直线l总与椭圆C有且只有一个公共点,所以,.①又由可得;同理可得.由原点O到直线的距离为和,可得.②将①代入②得,当时,,综上,面积的取值范围是.【点睛】此题考查了轨迹和直线与曲线相交问题,轨迹通过已知条件找到几何关系从而判断轨迹,直线与曲线相交一般联立设而不求韦达定理进行求解即可,属于一般性题目.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编版一年级下册语文教学计划
- 农村房屋协议转让协议书
- 医疗事故赔偿协议内容
- 《电机技术应用》课件 2.2.4 异步电动机的机械特性
- 中学课程实施方案(2024-2025学年)
- (2024)电子商务创业园项目可行性研究报告建议书(一)
- 2024年度个人年终工作总结范文三
- 【9上英RJ】亳州市利辛县部分学校联考2023-2024学年九年级上学期期末考试英语试题
- 2024秋新沪科版物理8年级上册教学课件 第6章 熟悉而陌生的力 第2节 测量:用弹簧测力计测量力
- 2023年高收缩腈纶项目筹资方案
- 带你玩转VR虚拟现实智慧树知到期末考试答案章节答案2024年烟台职业学院
- 力的合成与分解 说课课件-2024-2025学年高一上学期物理人教版(2019)必修第一册
- 《风车》第1课时(教案)苏科版劳动一年级上册1
- 油浸式电力变压器(电抗器)现场低频加热试验导则
- DL-T820.2-2019管道焊接接头超声波检测技术规程第2部分:A型脉冲反射法
- 桥式、门式起重机安装竣工试验报告书
- 劳务派遣突发事件应急预案
- 大学生助农直播创业计划书
- GB/T 43912-2024铸造机械再制造通用技术规范
- 2024政府采购评审专家考试题库附含答案
- 《法理学》(第三版教材)形成性考核作业1234答案
评论
0/150
提交评论