下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五单元圆教学设计第4课时圆环的面积教学内容人教版六年级上册教材第68页例2及相关练习。内容简析例2是求圆环的面积,教材通过插图帮助学生了解什么叫圆环,理解求圆环的面积是用外圆面积减去内圆面积。教材给出了两种算法:3.14×62-3.14×22和3.14×(62-22)。教材也有意引导学生根据乘法分配律,采用相对简便的算法,这样,可以大大减少计算的繁杂程度,减少计算出错的可能性。教学目标1.让学生认识圆环,了解并掌握圆环的特征和圆环面积的计算方法。2.通过操作、研究、发现、交流等教学活动,学会计算关于圆环的组合图形的面积,根据图形特征有效地选择计算方法。3.发展学生的空间观念与交流能力,培养学生的合作意识和创新意识。教学重点掌握计算圆环的面积的方法。教学难点圆环的面积计算在实际生活中的应用。教法与学法1.本课时教学圆环的面积时,通过具体情景引入,学生操作实践,以自主探究、小组合作等形式,引导学生在观察的基础上理解圆环的概念,掌握圆环面积的计算方法。在比较中体会两种方法的联系与区别,帮助学生建立圆环面积解决问题的教学模型,从而有效解决实际问题。2.本课时学生的学习主要是通过操作、观察、讨论、交流、归纳、抽象、概括等方法来理解圆环的面积,掌握圆环面积的计算方法,体验探究带来的乐趣。承前启后链教学过程一、情景创设,导入课题情景展示法:教师出示一个同心圆(光碟),将光碟贴在黑板上。然后引导学生观察光碟,提问:你有什么发现?引导学生明确:光碟实际就是大圆与小圆组成的同心圆。如果把同心圆中的小圆去掉,就得到一个圆环。然后教师提问:怎样计算这个圆环的面积呢?揭示课题。【品析:通过现实生活中光碟的引入,让学生体会数学与生活的紧密联系,同时提出问题,激发学生学习的热情。】联系实际引入法:教师出示奥运会会旗,提问:知道奥运会会旗是由什么图案组成的吗?引导学生明确是一大一小的同心圆。然后教师指出:像这类图形,具有环形的特点,我们称之为圆环。在我们的生活中,你见过哪些物体是圆环?学生举例,教师适当演示生活中的圆环,然后提问:你能求出圆环的面积吗?引出课题。【品析:从学生应该掌握的常识和身边发生过的事情入手,让学生体会到数学就在生活中,就在我们身边。】操作引入法:首先用课件播放图片欣赏:美妙的圆,然后让学生思考:圆的面积怎样计算?请同学们拿出半径10cm的圆片,谁能告诉大家,这个圆的面积是多少?(引导学生说出文字公式、字母公式、列出算式)接着让学生画一画:你能在这个圆内画一个小圆吗?试试看。(学生画圆,教师巡视指导,帮助有困难的学生)再算一算:你能算出小圆的面积吗?接着说一说。最后,让学生猜一猜,剪一剪:如果用剪刀剪去小圆,可能会得到什么图形?这种环形,在数学上被称为圆环。揭示课题。【品析:通过学生操作引入,一则激活学生原有的知识基础,二则将学生的思维由整个圆的面积逐步过渡到圆环的面积,同时提出问题激发了学生学习的兴趣,提高了学生渴望解决问题的积极性。】二、师生合作,探究新知◎引领学生分析教材第68页例2中的主题图片,提取已知信息,并找出待解决的问题。整理获得的信息:光盘的银色部分是一个圆环,内圆的半径是2cm,外圆的半径是6cm。问题:圆环的面积是多少?◎分析理解题意。1.什么是圆环、内圆、外圆?引导学生观察光盘,小组内讨论,理解圆环、外圆、内圆的含义。指出:圆环实际是环形的简称,两个同心圆,去掉里面的小圆(内圆)得到的就是圆环。2.制作圆环。(1)师:请同学们在硬纸板上画一个半径为6cm和一个半径为2cm的同心圆。学生按照要求画同心圆。(2)师:请同学们先剪下所画的大圆,再剪下所画的小圆。师:剩下的部分是什么图形?生:环形。师:(拿着学生剪的圆环)这个圆环是怎样得到的?生:从外圆中去掉一个内圆。师:在日常生活中你见过圆环或截面是圆环的物体吗?请举例。(屏幕显示生活中有圆环的物体,并闪动圆环让学生观察)【品析:教学过程以学生“画—剪—制”的亲身实践贯穿始终,同时在这一过程中渗透一些学法,如动手操作、合作交流、观察、分析等学习方法,使学生在学习中运用,在运用中掌握,学生通过自己动手操作,把圆环从一般图形中分离出来,使学生很快抓住了圆环的本质特征,形成圆环的概念,发展学生的空间观念。】◎探索圆环面积的计算方法。1.小组讨论:根据你们对圆环的理解,你认为应如何计算圆环的面积?汇报交流:圆环的面积=外圆的面积-内圆的面积。师:怎样求出圆的面积?【品析:因为学生有了亲身实践的体验,在小组的合作下总结圆环面积的计算方法水到渠成。】2.解决问题(1)师引导提问:现在再来看例2,它的面积指的是什么图形的面积?生:圆环的面积。师:怎样求圆环的面积?必须知道什么条件?生:圆环的面积=外圆的面积-内圆的面积,必须知道外圆半径和内圆半径。根据生答板书:外圆的面积:3.14×62=3.14×36=113.04(cm2)内圆的面积:3.14×22=3.14×4=12.56(cm2)圆环的面积:113.04-12.56=100.48(cm2)答:圆环的面积是100.48cm2。师:怎样列综合算式?还有没有更简便的列式方法?生:3.14×62-3.14×22。生:3.14×62-3.14×22=3.14×(62-22)=3.14×32=100.48(cm2)答:圆环的面积是100.48cm2。小结:圆环的面积计算公式:S=πR2-πr2或S=π×(R2-r2)(2)完成教材第68页“做一做”第2题。独立完成,集体交流。【参考答案】50÷2=25(m)10÷2=5(m)3.14×(252-52)=1884(m2)【品析:例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法的区别,好中选优,展现学生的创新精神。】三、反馈质疑,学有所得在学习圆的面积计算公式的推导的基础上,引导学生充分观察圆环,经历圆环面积的推导计算过程,引导学生对知识点及时消化吸收,教师提出质疑问题。质疑一:怎样求圆环的面积?学生在讨论后明确:要求圆环的面积,其实是将圆环看作两个圆,即外圆与内圆,圆环的面积=外圆的面积-内圆的面积。质疑二:计算圆环的面积时要注意什么?引导学生讨论后明确:计算圆环的面积,要注意是用外圆的面积减去内圆的面积,即用外圆半径的平方减去内圆半径的平方再乘圆周率。【品析:通过反馈质疑,帮助学生回顾圆环面积的计算过程,引导学生深刻理解公式。】巩固应用,内化提升1.完成教材第72页“练习十五”的第5题。独立完成,同桌交流。提问:你是怎样想的?【参考答案】5.18÷2=9(cm)7÷2=3.5(cm)3.14×(92-3.52)=215.875(cm2)2.一个圆环,内圆半径是5cm,环宽2cm,求这个圆环的面积是多少平方厘米。(已知内圆半径和环宽,可求出外圆半径,就是5+2=7(cm),然后根据圆环面积的计算方法解决问题)【参考答案】5+2=7(cm)3.14×(72-52)=75.36(cm2)【品析:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。】五、课末小结,融会贯通今天我们学习了什么?怎样求圆环的面积?你用了哪些方法?如果小圆的位置在大圆里任意移动,求面积的方法一样吗?/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力公司智能电网调度与管理平台开发方案
- 企业品牌形象设计制作合同
- 2024版公司整体转让协议书
- DB3311T 121-2019 绿色储粮(控温和制氮气调)技术规范
- 二零二五年度带私人影院二手房租赁合同范本
- 童年时光里的那片花园征文
- 中学生生物教材故事征文
- 2024年甲乙双方关于高端智能家居用木材的购销合同
- 2024版公司贷款合同
- 2024版夫妻离婚协议书范本
- 山东省济宁市2023-2024学年第一学期期中质量检测高二数学试题含答案
- 医疗器械委托生产前综合评价报告
- 2024年自然资源部直属企事业单位公开招聘历年高频500题难、易错点模拟试题附带答案详解
- 2023年吉林省中考满分作文《感动盈怀岁月暖》2
- 广东深圳市龙岗区产服集团招聘笔试题库2024
- 公路施工表格
- 2024至2030年中国昆明市酒店行业发展监测及市场发展潜力预测报告
- 《中国心力衰竭诊断和治疗指南2024》解读(总)
- 科学新课程标准中核心素养的内涵解读及实施方略讲解课件
- 轮扣式高支模施工方案
- 医疗质量信息数据内部验证制度
评论
0/150
提交评论