版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件2.已知集合,定义集合,则等于()A. B.C. D.3.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.4.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.35.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.6.已知条件,条件直线与直线平行,则是的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件7.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.8.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到9.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心10.()A. B. C. D.11.集合,则()A. B. C. D.12.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.14.已知全集,集合则_____.15.记为数列的前项和,若,则__________.16.的展开式中,的系数为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数,(是自然对数的底数).(Ⅰ)讨论函数极值点的个数;(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.18.(12分)如图,在三棱柱中,平面ABC.(1)证明:平面平面(2)求二面角的余弦值.19.(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,,.(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值.20.(12分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.21.(12分)已知都是大于零的实数.(1)证明;(2)若,证明.22.(10分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【题目详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【答案点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.2、C【答案解析】
根据定义,求出,即可求出结论.【题目详解】因为集合,所以,则,所以.故选:C.【答案点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.3、A【答案解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.4、D【答案解析】
在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【题目详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【答案点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.5、D【答案解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.6、C【答案解析】
先根据直线与直线平行确定的值,进而即可确定结果.【题目详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【答案点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.7、D【答案解析】
首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【题目详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【答案点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.8、D【答案解析】
由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【题目详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【答案点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.9、A【答案解析】
根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【题目详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【答案点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.10、D【答案解析】
利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【题目详解】由所以,所以原式所以原式故故选:D【答案点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.11、D【答案解析】
利用交集的定义直接计算即可.【题目详解】,故,故选:D.【答案点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.12、C【答案解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【题目详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【答案点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
直接计算,可得结果.【题目详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【答案点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.14、【答案解析】
根据补集的定义求解即可.【题目详解】解:.故答案为.【答案点睛】本题主要考查了补集的运算,属于基础题.15、-254【答案解析】
利用代入即可得到,即是等比数列,再利用等比数列的通项公式计算即可.【题目详解】由已知,得,即,所以又,即,,所以是以-4为首项,2为公比的等比数列,所以,即,所以。故答案为:【答案点睛】本题考查已知与的关系求,考查学生的数学运算求解能力,是一道中档题.16、16【答案解析】
要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【题目详解】的系数为.故答案为:16【答案点睛】此题考查二项式的系数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,没有极值点,当时,有一个极小值点.(2)【答案解析】试题分析:(1),分,讨论,当时,对,,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设,所以,设,则,且是增函数,所以。所以分和k>1讨论。试题解析:(Ⅰ)因为,所以,当时,对,,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.(Ⅱ)命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设,所以,设,则,且是增函数,所以当时,,所以在上是增函数,,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为,,所以在上存在唯一零点,当时,,在上单调递减,从而,即,所以在上单调递减,所以当时,,即.所以不等式在区间内有解综上所述,实数的取值范围为.18、(1)证明见解析(2)【答案解析】
(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【题目详解】(1)证明:因为平面ABC,所以因为.所以.即又.所以平面因为平面.所以平面平面(2)解:由题可得两两垂直,所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以设平面的一个法向量为,由.得令,得又平面,所以平面的一个法向量为.所以二面角的余弦值为.【答案点睛】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.19、(1)见解析(2),最大值.【答案解析】
(1)先证明,,故平面ADC.由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【题目详解】(1)证明:∵四边形DCBE为平行四边形,∴,.∵平面ABC,平面ABC,∴.∵AB是圆O的直径,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,当且仅当,即时取等号,∴当时,体积有最大值.【答案点睛】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.20、(1)见解析;(2)证明见解析.【答案解析】
当时,求函数的导数,判断导函数的单调性,计算即为导函数的零点;
当时,分类讨论x的范围,可令新函数,计算新函数的最值可证明.【题目详解】(1)的定义域为当时,,,易知为上的增函数,又/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 23090-25:2025 EN Information technology - Coded representation of immersive media - Part 25: Conformance and reference software for carriage of visual volumetric vid
- 二零二五版企业清算注销及税务筹划合同3篇
- 二零二五版供配电设施安全风险评估与治理合同3篇
- 二零二五版锅炉安装与能源审计服务合同范本3篇
- 二零二五版阿拉尔经济技术开发区绿色建筑推广应用合同3篇
- 二零二五版高职高专土建专业校企合作项目合同3篇
- 二零二五版二手车买卖纠纷处理合同3篇
- 二零二五版公益项目合同担保法合规合同3篇
- 二零二五版专业打印设备升级与维护服务合同2篇
- 二零二五版电子商务平台食品农产品溯源合同3篇
- 2025年工程合作协议书
- 2025年山东省东营市东营区融媒体中心招聘全媒体采编播专业技术人员10人历年高频重点提升(共500题)附带答案详解
- 2025年宜宾人才限公司招聘高频重点提升(共500题)附带答案详解
- KAT1-2023井下探放水技术规范
- 驾驶证学法减分(学法免分)题库及答案200题完整版
- 竣工验收程序流程图
- 清华经管工商管理硕士研究生培养计划
- 口腔科诊断证明书模板
- 管沟挖槽土方计算公式
- 国网浙江省电力公司住宅工程配电设计技术规定
- 烟花爆竹零售应急预案
评论
0/150
提交评论