十字相乘法课件85796_第1页
十字相乘法课件85796_第2页
十字相乘法课件85796_第3页
十字相乘法课件85796_第4页
十字相乘法课件85796_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

十字相乘法

1B十字相乘法1B课前复习:1.什么是因式分解?因式分解的实质是()与()是“积化和差”的过程正好()。2.之前我们都学习了哪些分解因式的方法?提取公因式法公式法把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。“和差化积”整式乘法相反2B课前复习:1.什么是因式分解?因式分解的实质是(计算下列各题:

问:你有什么快速计算类似多项式的方法吗?3B计算下列各题:等式左边是两个一次二项式()二次三项式右边是()相乘这个过程将()的形式,转化成()的形式,进行的是()运算。积和差整式乘法4B等式左边是两个一次二项式()二次三项式右边是等式左边是(),二次项的系数是()二次三项式等式右边是两个一次二项式(),整个等式从左到右将()的形式转化成()的形式,进行的是()。相乘和差积因式分解=====15B等式左边是(),二次那么a和b如何确定呢?满足什么条件呢?它们的乘积等于常数项,它们的和等于一次项系数。试一试:把x2+3x+2分解因式6B那么a和b如何确定呢?满足什么条件呢?它们的乘积等于常数项,例一:步骤:①竖分二次项与常数项②交叉相乘,和相加③检验确定,横写因式十字相乘法(借助十字交叉线分解因式的方法)顺口溜:

竖分常数交叉验,

横写因式不能乱。7B例一:步骤:①竖分二次项与常数项②交叉相乘,和相加③检验确定分析∵(+1)×(+2)=+2(+1)+(+2)=+3∴试一试:把x2+3x+2分解因式常数项一次项系数十字交叉线利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。(1).因式分解竖直写;(2).交叉相乘验中项;(3).横向写出两因式;8B分析∵(+1)×(+2)=+2∴试一试:把x2+3x+十字相乘法公式:请大家记住公式9B十字相乘法公式:请大家记住公式9B十字相乘法进行因式分解的关键:

(1)列出常数项分解成两个因数的积的各种可能情况;拆分常数项(2)尝试其中的哪两个因数的和恰好等于一次项系数;验证一次项定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。10B十字相乘法进行因式分解的关键:(1)列出常数项分解成两例题1:分解因式

1.2.3.4.练一练:在下列各式的横线上填入“+”和“—”号。——+—++—+11B例题1:分解因式1.寻找的两数a和b的符号是如何确定的?当q>0时,a、b(),且a、b的符号和p的符号().当q<0时,a、b(),且绝对值较大的因数与p的符号().同号相同异号相同12B寻找的两数a和b的符号是如何确定的?当q>0时,a、b(例2、把y4-7y2-18

分解因式例3、把x2-9xy+14y2分解因式13B例2、把y4-7y2-18分解因式例3、把x2-9xy把下列各式分解因式1.x2-11x-122.x2+4x-123.x2-x-124.x2-5x-145.y2-11y+2414B把下列各式分解因式1.x2-11x-122.xx2-5x+6x2-5x-6X2+5x-6X2+5x+615Bx2-5x+615B用十字相乘法分解下列因式1、x4-13x2+362、x2+3xy-4y23、x2y2+16xy+484、(2+a)2+5(2+a)-365、x4-2x3-48x216B用十字相乘法分解下列因式1、x4-13x2+362、x2+3例4、把6x2-23x+10分解因式1、8x2-22x+152、14a2-29a-153、4m2+7mn-36n24、10(y+1)2-29(y+1)+10十字相乘法的要领是:“头尾分解,交叉相乘,求和凑中,观察试验”。17B例4、把6x2-23x+10分解因式1、8x2-22x+例5、把(x2+5x)2-2(x2+5x)-24分解因式例6、把(x2+2x+3)(x2+2x-2)-6分解因式例7、把(x+1)(x+2)(x+3)(x+4)-3分解因式18B例5、把(x2+5x)2-2(x2+5x)-24分解因式例6拓展创新把下列各式分解因式1、x2-4xy+4y2-6x+12y+82、(x2+2x)(x2+2x-11)+113、xn+1+3xn+2xn-14、(x+1)(x+3)(x+5)(x+7)+1619B拓展创新把下列各式分解因式1、x2-4xy+4y2-6x+1若,下面两个结论对吗?(1)A和B同时都为0,即A=0且B=0;(2)A和B中至少有一个为0,即A=0或B=0。课外拓展:请结合上面的结论,运用十字相乘法解下列一元二次方程:1).2).20B若,下面两个结论对吗?(1)思考2:

我们现在所研究的都是二次项系数是1的二次三项式用十字相乘法进行因式分解,那么当二次项的系数不是1,而是其他数字时又该如何进行分解呢?例如:21B思考2:我们现在所研究的都是二次项小结通过这节课的学习你有什么收获?1.十字相乘法分解因式的公式:x2+(a+b)x+ab=(x+a)(x+b)3.在用十字相乘法分解因式时,因为常数项的分解因数有多种情况,所以通常要经过多次的尝试才能确定采用哪组分解来进行分解因式。2.能用十字相乘法来分解因式的二次三项式的系数的特点:常数项能分解成两个数的积,且这两个数的和恰好等于一次项的系数。22B小结通过这节课的学习你有什么收获?1.十字相乘法分解因式的思考3:

是不是所有的二次三项式都可以用十字相乘法进行因式分解呢?如果不是,那满足什么条件的二次三项式可以用十字相乘法进行因式分解呢?23B思考3:是不是所有拓展练习将下列多项式因式分解(1)x2+3x-4(2)x2-3x-4(3)x2+6xy-16y2(4)x2-11xy+24y2(5)x2y2-7xy-18(6)x4+13x2+36(7)(a+b)2-4(a+b)+3(8)x4-3x3-28x2(9)2x2-7x+3(10)5x2+6xy-8y224B拓展练习将下列多项式因式分解(7)(a+b)2-4(a+b)十字相乘法

25B十字相乘法1B课前复习:1.什么是因式分解?因式分解的实质是()与()是“积化和差”的过程正好()。2.之前我们都学习了哪些分解因式的方法?提取公因式法公式法把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。“和差化积”整式乘法相反26B课前复习:1.什么是因式分解?因式分解的实质是(计算下列各题:

问:你有什么快速计算类似多项式的方法吗?27B计算下列各题:等式左边是两个一次二项式()二次三项式右边是()相乘这个过程将()的形式,转化成()的形式,进行的是()运算。积和差整式乘法28B等式左边是两个一次二项式()二次三项式右边是等式左边是(),二次项的系数是()二次三项式等式右边是两个一次二项式(),整个等式从左到右将()的形式转化成()的形式,进行的是()。相乘和差积因式分解=====129B等式左边是(),二次那么a和b如何确定呢?满足什么条件呢?它们的乘积等于常数项,它们的和等于一次项系数。试一试:把x2+3x+2分解因式30B那么a和b如何确定呢?满足什么条件呢?它们的乘积等于常数项,例一:步骤:①竖分二次项与常数项②交叉相乘,和相加③检验确定,横写因式十字相乘法(借助十字交叉线分解因式的方法)顺口溜:

竖分常数交叉验,

横写因式不能乱。31B例一:步骤:①竖分二次项与常数项②交叉相乘,和相加③检验确定分析∵(+1)×(+2)=+2(+1)+(+2)=+3∴试一试:把x2+3x+2分解因式常数项一次项系数十字交叉线利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。(1).因式分解竖直写;(2).交叉相乘验中项;(3).横向写出两因式;32B分析∵(+1)×(+2)=+2∴试一试:把x2+3x+十字相乘法公式:请大家记住公式33B十字相乘法公式:请大家记住公式9B十字相乘法进行因式分解的关键:

(1)列出常数项分解成两个因数的积的各种可能情况;拆分常数项(2)尝试其中的哪两个因数的和恰好等于一次项系数;验证一次项定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法。34B十字相乘法进行因式分解的关键:(1)列出常数项分解成两例题1:分解因式

1.2.3.4.练一练:在下列各式的横线上填入“+”和“—”号。——+—++—+35B例题1:分解因式1.寻找的两数a和b的符号是如何确定的?当q>0时,a、b(),且a、b的符号和p的符号().当q<0时,a、b(),且绝对值较大的因数与p的符号().同号相同异号相同36B寻找的两数a和b的符号是如何确定的?当q>0时,a、b(例2、把y4-7y2-18

分解因式例3、把x2-9xy+14y2分解因式37B例2、把y4-7y2-18分解因式例3、把x2-9xy把下列各式分解因式1.x2-11x-122.x2+4x-123.x2-x-124.x2-5x-145.y2-11y+2438B把下列各式分解因式1.x2-11x-122.xx2-5x+6x2-5x-6X2+5x-6X2+5x+639Bx2-5x+615B用十字相乘法分解下列因式1、x4-13x2+362、x2+3xy-4y23、x2y2+16xy+484、(2+a)2+5(2+a)-365、x4-2x3-48x240B用十字相乘法分解下列因式1、x4-13x2+362、x2+3例4、把6x2-23x+10分解因式1、8x2-22x+152、14a2-29a-153、4m2+7mn-36n24、10(y+1)2-29(y+1)+10十字相乘法的要领是:“头尾分解,交叉相乘,求和凑中,观察试验”。41B例4、把6x2-23x+10分解因式1、8x2-22x+例5、把(x2+5x)2-2(x2+5x)-24分解因式例6、把(x2+2x+3)(x2+2x-2)-6分解因式例7、把(x+1)(x+2)(x+3)(x+4)-3分解因式42B例5、把(x2+5x)2-2(x2+5x)-24分解因式例6拓展创新把下列各式分解因式1、x2-4xy+4y2-6x+12y+82、(x2+2x)(x2+2x-11)+113、xn+1+3xn+2xn-14、(x+1)(x+3)(x+5)(x+7)+1643B拓展创新把下列各式分解因式1、x2-4xy+4y2-6x+1若,下面两个结论对吗?(1)A和B同时都为0,即A=0且B=0;(2)A和B中至少有一个为0,即A=0或B=0。课外拓展:请结合上面的结论,运用十字相乘法解下列一元二次方程:1).2).44B若,下面两个结论对吗?(1)思考2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论