版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.1.1相交线5.1.1相交线本课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内不重合的两条直线的一种位置关系:相交,研究相交线所形成的邻补角、对顶角的位置和数量关系.课件说明本课是在学生已经学习了直线、射线、课件说明学习目标:(1)理解邻补角和对顶角的概念.(2)掌握“对顶角相等”的性质.学习重点:对顶角相等的性质.课件说明学习目标:课件说明观察这些图片,你能否看到相交线、平行线?1.创设情境,导入新知观察这些图片,你能否看到相交线、平行线?1.创设情境,导入新如果把剪子的构造抽象成一个几何图形,会是什么样的图形?请你在笔记本上画出.1.创设情境,导入新知如果把剪子的构造抽象成一个几何图形,1.创设情境,导入新知仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠1与∠2有怎样的位置关系?∠1与∠2的顶点所在的位置有什么特点?2.细心观察,归纳定义ABCDO1234仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠1与∠2有怎样的位置关系?∠1与∠2的边所在的位置有什么特点?2.细心观察,归纳定义ABCDO1234仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠图中还有哪些邻补角?2.细心观察,归纳定义邻补角的定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角.ABCDO1234图中还有哪些邻补角?2.细心观察,归纳定义邻补角的定义:∠1∠1与∠3有怎样的位置关系?2.细心观察,归纳定义ABCDO1234∠1与∠3有怎样的位置关系?2.细心观察,归纳定义ABCDO图中还有哪些对顶角?2.细心观察,归纳定义对顶角的定义:∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.ABCDO1234图中还有哪些对顶角?2.细心观察,归纳定义对顶角的定义:∠1例
1(1)下列各图中,∠1和∠2是邻补角吗?为什么?
(1)
(2)
(3)1211222.细心观察,归纳定义例1(1)下列各图中,∠1和∠2是邻补角吗?为什么?1212(2)(3)(4)21(1)12(5)12122.细心观察,归纳定义例
1(2)下列各图中,∠1和∠2是对顶角吗?为什么?
12(2)(3)(4)21(1)12(5)12122.细心观例
1(3)请分别画出图中∠1的对顶角
和∠2的邻补角.2.细心观察,归纳定义21例1(3)请分别画出图中∠1的对顶角2.细心观察,归纳定义例
1(4)如图,三条直线AB
,CD,EF相交于
点O,∠AOE的对顶角是
,∠EOD的邻补角是
.ABFCDEO2.细心观察,归纳定义∠FOB∠FOD、∠COE例1(4)如图,三条直线AB,CD,EF相交于ABFC∠1与∠2有怎样的数量关系?3.动手操作,推出性质ABCDO1234互补∠1与∠2有怎样的数量关系?3.动手操作,推出性质ABCDO∠1与∠3有怎样的数量关系?3.动手操作,推出性质ABCDO1234你是怎样得到的?相等∠1与∠3有怎样的数量关系?3.动手操作,推出性质ABCDO你能说出∠1=∠3的道理吗?因为
∠1与∠2
互补,
∠3与∠2
互补(邻补角的定义),所以
∠1=∠3(同角的补角相等),同理∠2=∠4
.3.动手操作,推出性质ABCDO1234请你用数学的语言写出这个过程.你能说出∠1=∠3的道理吗?因为∠1与∠2互补,3.动手例2
如图,直线a,b相交于点O,∠1=,求∠2
,∠3
,∠4
的度数.4.动脑思考,例题解析1234ab解:由邻补角定义,可得O由对顶角相等,可得
,.例2如图,直线a,b相交于点O,∠1=,例2
如图,直线a,b相交于点O,∠1=,求∠2,∠3,∠4的度数.5.动脑思考,变式训练1234abO变式2若∠2是∠1的3.5倍,求各个角的度数.变式1若∠1+∠3=80º,求各个角的度数.变式3若1:
2=2:
7
,求各个角的度数.例2如图,直线a,b相交于点O,∠1=,(1)什么是邻补角?
邻补角与补角有什么区别?
6.归纳小结(2)什么是对顶角?
对顶角有什么性质?(1)什么是邻补角?6.归纳小结(2)什么是对顶角?教科书习题5.1第1、2题.
7.布置作业教科书习题5.1第1、2题.7.布置作业5.1.1相交线5.1.1相交线本课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内不重合的两条直线的一种位置关系:相交,研究相交线所形成的邻补角、对顶角的位置和数量关系.课件说明本课是在学生已经学习了直线、射线、课件说明学习目标:(1)理解邻补角和对顶角的概念.(2)掌握“对顶角相等”的性质.学习重点:对顶角相等的性质.课件说明学习目标:课件说明观察这些图片,你能否看到相交线、平行线?1.创设情境,导入新知观察这些图片,你能否看到相交线、平行线?1.创设情境,导入新如果把剪子的构造抽象成一个几何图形,会是什么样的图形?请你在笔记本上画出.1.创设情境,导入新知如果把剪子的构造抽象成一个几何图形,1.创设情境,导入新知仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠1与∠2有怎样的位置关系?∠1与∠2的顶点所在的位置有什么特点?2.细心观察,归纳定义ABCDO1234仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠1与∠2有怎样的位置关系?∠1与∠2的边所在的位置有什么特点?2.细心观察,归纳定义ABCDO1234仔细观察你所画的图形,当两条直线相交时,所形成的四个角中,∠图中还有哪些邻补角?2.细心观察,归纳定义邻补角的定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角.ABCDO1234图中还有哪些邻补角?2.细心观察,归纳定义邻补角的定义:∠1∠1与∠3有怎样的位置关系?2.细心观察,归纳定义ABCDO1234∠1与∠3有怎样的位置关系?2.细心观察,归纳定义ABCDO图中还有哪些对顶角?2.细心观察,归纳定义对顶角的定义:∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.ABCDO1234图中还有哪些对顶角?2.细心观察,归纳定义对顶角的定义:∠1例
1(1)下列各图中,∠1和∠2是邻补角吗?为什么?
(1)
(2)
(3)1211222.细心观察,归纳定义例1(1)下列各图中,∠1和∠2是邻补角吗?为什么?1212(2)(3)(4)21(1)12(5)12122.细心观察,归纳定义例
1(2)下列各图中,∠1和∠2是对顶角吗?为什么?
12(2)(3)(4)21(1)12(5)12122.细心观例
1(3)请分别画出图中∠1的对顶角
和∠2的邻补角.2.细心观察,归纳定义21例1(3)请分别画出图中∠1的对顶角2.细心观察,归纳定义例
1(4)如图,三条直线AB
,CD,EF相交于
点O,∠AOE的对顶角是
,∠EOD的邻补角是
.ABFCDEO2.细心观察,归纳定义∠FOB∠FOD、∠COE例1(4)如图,三条直线AB,CD,EF相交于ABFC∠1与∠2有怎样的数量关系?3.动手操作,推出性质ABCDO1234互补∠1与∠2有怎样的数量关系?3.动手操作,推出性质ABCDO∠1与∠3有怎样的数量关系?3.动手操作,推出性质ABCDO1234你是怎样得到的?相等∠1与∠3有怎样的数量关系?3.动手操作,推出性质ABCDO你能说出∠1=∠3的道理吗?因为
∠1与∠2
互补,
∠3与∠2
互补(邻补角的定义),所以
∠1=∠3(同角的补角相等),同理∠2=∠4
.3.动手操作,推出性质ABCDO1234请你用数学的语言写出这个过程.你能说出∠1=∠3的道理吗?因为∠1与∠2互补,3.动手例2
如图,直线a,b相交于点O,∠1=,求∠2
,∠3
,∠4
的度数.4.动脑思考,例题解析1234ab解:由邻补角定义,可得O由对顶角相等,可得
,.例2如图,直线a,b相交于点O,∠1=,例2
如图,直线a,b相交于点O,∠1=,求∠2,∠3,∠4的度数.5.动脑思考,变式训练1234abO变式2若∠2是∠1的3.5倍,求各个角的度数.变式1若∠1+∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省淄博市2023-2024学年高一下学期7月期末考试地理
- 工程索赔的计算
- 语文一轮复习高考三帮全国版试题专题五古代诗歌鉴赏(考题帮语文)
- 江西省部分学校2023-2024学年高一下学期6月期末考试生物
- 小学二年级下册数学奥数知识点讲解第6课《七座桥问题》试题附答案
- 2019-2020学年八年级上学期期末考试常考题汇编(首字母填空)学生版
- 五年级上册体育教案(人教版)
- 住宅装修绿化工程协议
- 婚庆策划居间合同样本
- 4S店装修项目封面样板
- 2024年07月广东珠海高新区科技产业局公开招聘专员1人笔试历年典型考题及考点剖析附答案详解
- 资产管理部先进总结
- 租赁经营合同
- 2025届高考写作指导:议论文拟题方法及标题模板
- 2024年上海市普通高中学业水平等级性考试历史试卷(含答案解析)
- 世界各国中英文名称大全
- 眼的解剖结构与生理功能课件
- DL-T 572-2021电力变压器运行规程-PDF解密
- 货物供应方案及运输方案
- 羊水少治疗护理查房
- 2024年陕西省二级建造师继续教育网络考试试题
评论
0/150
提交评论