快速成型技术的介绍_第1页
快速成型技术的介绍_第2页
快速成型技术的介绍_第3页
快速成型技术的介绍_第4页
快速成型技术的介绍_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

快速成型技术的介绍

3D打印技术的介绍及设计

摘要:快速成型制造技术是九十年代发展起来的一项先进制造技术,自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。3D打印即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术;3D打印现在运用在生产生活的各个领域。关键词:快速成型;3D打印

1快速成型制造技术

1.1简介

快速原型制造技术,又叫快速成形技术,(简称RP技术)。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是〃分层制造,逐层叠加〃,类似于数学上的积分过程。形象地讲,快速成形系统就像是一台〃立体打印机〃。

1.2产生背景

随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。

制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度和制造技术的柔性就十分关键。

从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。

1.3技术特点

制造原型所用的材料不限,各种金属和非金属材料均可使用;

原型的复制性、互换性高;

制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越;

加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上;

高度技术集成,可实现了设计制造一体化。

1.4基本原理

快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。

1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。

2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。

1.5快速成型制造技术类型

自从1988年世界上第一台快速原型机问世以来,各种不同的快速原型工艺相继出现并逐渐成熟。目前快速原型方法有几十种,其中以光固化成型(SLA)、层叠实体制造(LOM)、选择性激光烧结(SLS)、熔融沉积制造(FDM)工艺使用最为广泛和成熟。下面简要介绍几种典型的快速原型工艺的基本原理。

1.5.1光固化成形

SLA(StereolithographyApparatus)工艺也称光造型、立体光刻及立体印刷,其工艺过程是以液态光敏树脂为材料充满液槽,由计算机控制激光束跟踪层状截面轨迹,并照射到液槽中的液体树脂,而使这一层树脂固化,之后升降台下降一层高度,已成型的层面上又布满一层树脂,然后再进行新一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到1个三维实体模型。该工艺的特点是:原型件精度高,零件强度和硬度好,可制出形状特别复杂的空心零件,生产的模型柔性化好,可随意拆装,是间接制模的理想方法。缺点是需要支撑,树脂收缩会导致精度下降,另外光固化树脂有一定的毒性而不符合绿色制造发展趋势等。

1.5.2分层实体制造

LOM(LaminatedObjectManufacturing)工艺或称为叠层实体制造,其工艺原理是根据零件分层几何信息切割箔材和纸等,将所获得的层片粘接成三维实体。其工艺过程是:首先铺上一层箔材,然后用CO,激光在计算机控制下切出本层轮廓,非零件部分全部切碎以便于去除。当本层完成后,再铺上一层箔材,用滚子碾压并加热,以固化黏结剂,使新铺上的一层牢固地粘接在已成形体上,再切割该层的轮廓,如此反复直到加工完毕,最后去除切碎部分以得到完整的零件。该工艺的特点是工作可靠,模型支撑性好,成本低,效率高。缺点是前、后处理费时费力,且不能制造中空结构件。

1.5.3选择性激光烧结

SLS(SelectiveLaserSintering)工艺,常采用的材料有金属、陶瓷、ABS塑料等材料的粉末作为成形材料。其工艺过程是:先在工作台上铺上一层粉末,在计算机控制下用激光束有选择地进行烧结(零件的空心部分不烧结,仍为粉末材料),被烧结部分便固化在一起构成零件的实心部分。一层完成后再进行下一层,新一层与其上一层被牢牢地烧结在一起。全部烧结完成后,去除多余的粉末,便得到烧结成的零件。该工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、金属、蜡等材料的零件。造型精度高,原型强度高,所以可用样件进行功能试验或装配模拟。

1.5.4熔融沉积成形

FDM(FusedDepositionManufacturing)工艺又称为熔丝沉积制造,其工艺过程是以热塑性成形材料丝为材料,材料丝通过加热器的挤压头熔化成液体,由计算机控制挤压头沿零件的每一截面的轮廓准确运动,使熔化的热塑材料丝通过喷嘴挤出,覆盖于已建造的零件之上,并在极短的时间内迅速凝固,形成一层材料。之后,挤压头沿轴向向上运动一微小距离进行下一层材料的建造。这样逐层由底到顶地堆积成一个实体模型或零件。该工艺的特点是使用、维护简单,成本较低,速度快,一般复杂程度原型仅需要几个小时即可成型,且无污染。

1.5.5三维印刷工艺

三维印刷工艺(3DP),是由美国麻省理工学院开发成功的,它的工作过程类似于喷墨打印机。喷头在计算机的控制下按照截面轮廓信息,在铺好的一层粉末材料上(如陶瓷粉末,金属粉末),有选择的喷射粘合剂使部分粉末粘合,形成截面层。一层完成后,工作台下降一个层厚,铺粉,喷粘合剂,在进行下一层的粘合,如此循环形成三维产品。粘合得到的制件强度低,还须后处理,先烧掉粘合剂,然后在高温下渗入金属,使零件致密化。

1.6快速成型技术的应用

不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面:

在新产品造型设计过程中的应用快速成形技术为工业产品的设计开发人员建立了一种崭新的产品开发模式。运用RP技术能够快速、直接、精确地将设计思想转化为具有一定功能的实物模型(样件),这不仅缩短了开发周期,而且降低了开发费用,也使企业在激烈的市场竞争中占有先机。

在机械制造领域的应用由于RP技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。

(3)快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具。

在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。

在文化艺术领域的应用在文化艺术领域,快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。

在航空航天技术领域的应用在航空航天领域中,空气动力学地面模拟实验(即风洞实验)是设计性能先进的天地往返系统(即航天飞机)所必不可少的重要环节。该实验中所用的模型形状复杂、精度要求高、又具有流线型特性,采用RP技术,根据CAD模型,由RP设备自动完成实体模型,能够很好的保证模型质量。

在家电行业的应用目前,快速成形系统在国内的家电行业上得到了很大程度的普及与应用,使许多家电企业走在了国内前列。

快速成形技术的应用很广泛,可以相信,随着快速成形制造技术的不断成熟和完善,它将会在越来越多的领域得到推广和应用。

23D打印技术

2.1简介

3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。

2.2历史与发展

3D打印技术出现在20世纪90年代中期,实际上是利用光固化和纸层叠等技术的最新快速成型装置。它与普通打印工作原理基本相同,打印机内装有液体或粉末等“打印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。这打印技术称为3D立体打印技术。

1986年,CharlesHull开发了第一台商业3D印刷机。

1993年,麻省理工学院获3D印刷技术专利。

1995年,美国ZCorp公司从麻省理工学院获得唯一授权并开始开发3D打印机。

2005年,市场上首个高清晰彩色3D打印机SpectrumZ510由ZCorp公司研制成功。

2010年11月,世界上第一辆由3D打印机打印而成的汽车Urbee问世。

2011年6月6日,发布了全球第一款3D打印的比基尼。

2011年7月,英国研究人员开发出世界上第一台3D巧克力打印机。

2011年8月,南安普敦大学的工程师们开发出世界上第一架3D打印的飞机。

2012年11月,苏格兰科学家利用人体细胞首次用3D打印机打印出人造肝脏组织。

2013年10月,全球首次成功拍卖一款名为“0N0之神”的3D打印艺术品。

2013年11月,美国德克萨斯州奥斯汀的3D打印公司“固体概念”(SolidConcepts)设计制造出3D打印金属手枪。

2.3基本原理

3D打印机与普通打印机工作原理基本相同,只是打印材料有些不同,普通打印机的打印材料是墨水和纸张,而3D打印机内装有金属、陶瓷、塑料、砂等不同的“打印材料”,是实实在在的原材料,打印机与电脑连接后,通过电脑控制可以把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。通俗地说,3D打印机是可以“打印”出真实的3D物体的一种设备,比如打印一个机器人、打印玩具车,打印各种模型,甚至是食物等等。之所以通俗地称其为“打印机”是参照了普通打印机的技术原理,因为分层加工的过程与喷墨打印十分相似。

3D打印的过程

三维设计

三维打印的设计过程是:先通过计算机建模软件建模,再将建成的三维模型“分区”成逐层的截面,即切片,从而指导打印机逐层打印。

设计软件和打印机之间协作的标准文件格式是STL文件格式。一个STL文件使用三角面来近似模拟物体的表面。三角面越小其生成的表面分辨率越高。PLY是一种通过扫描产生的三维文件的扫描器,其生成的VRML或者WRL文件经常被用作全彩打印的输入文件。

切片处理

打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。

打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex系列还有三维Systems'Projet系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。

传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。

完成打印

三维打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:先用当前的三维打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。

有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。

3D打印的应用

3D打印在生产生活中有很多的应用,主要应用在像国防军事领域:海军舰艇、航天科技;医学领域;房屋建筑;汽车行业;电子行业等行业中。

33D打印成果展示

本次3D打印实践我搜索资料选择了打印一个圆形的杯垫,如下图1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论