通信系统课件:第九章 信息论基础_第1页
通信系统课件:第九章 信息论基础_第2页
通信系统课件:第九章 信息论基础_第3页
通信系统课件:第九章 信息论基础_第4页
通信系统课件:第九章 信息论基础_第5页
已阅读5页,还剩124页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter9FundamentalLimitsinInformationTheoryProblems:(pp.618-625)9.39.5

9.109.11

6

9.311Chapter9FundamentalLimitsinInformationTheory9.1Introduction9.2Uncertainty,Information,andEntropy9.3Source-CodingTheorem9.4DataCompaction9.5DiscreteMemorylessChannels9.6MutualInformation9.7ChannelCapacity9.8Channel-CodingTheorem9.9DifferentialEntropyandMutualInformationforContinuousEnsembles2Chapter9FundamentalLimitsinInformationTheory9.10InformationCapacityTheorem9.11ImplicationsoftheInformationCapacityTheorem9.12InformationCapacityofColoredNoiseChannel9.13RateDistortionTheory9.14DataCompression9.15SummaryandDiscussion3第九章信息论基础9.1引言9.2不确定性、信息和熵9.3信源编码定理9.4无失真数据压缩9.5离散无记忆信道9.6互信息9.7信道容量9.8信道编码定理9.9连续信号的相对熵和互信息9.10信息容量定理9.11信息容量定理的含义9.12有色噪声信道的信息容量9.13率失真定理9.14数据压缩9.15总结与讨论4Chapter9FundamentalLimitsinInformationTheoryMainTopics:

Entropy-basicmeasureofinformationSourcecodinganddatacompactionMutualinformation-channelcapacityChannelcoding

InformationcapacitytheoremRate-distortiontheory-sourcecoding59.1Introduction

Purposeofacommunicationsystem

carryinformation-bearingbasebandsignalsfromoneplacetoanotheroveracommunicationchannelRequirementsofacommunicationsystemEfficient:sourcecodingReliable:error-controlcoding69.1Introduction

Questions:1.Whatistheirreduciblecomplexitybelowwhichasignalcannotbecompressed?2.Whatistheultimatetransmissionrateforreliablecommunicationoveranoisychannel?So,invokeinformationtheory(Shannon1948) ↓

mathematicalmodelingandanalysis ofcommunicationsystems79.1Introduction

Answers:1.Entropyofasource2.CapacityofachannelAremarkableresult:If(theentropyofthesource)<(the capacityofthechannel)Thenerror-freecommunicationoverthe channelcanbeachieved.89.2Uncertainty,Information,andEntropyUncertaintyDiscretememorylesssource:->adiscreterandomvariable,S(statisticallyindependent)

(9.1)(9.2)(9.3)99.2Uncertainty,Information,andEntropyeventbeforeoccur,amountofuncertaintyoccur,amountofsurpriseafter,informationgain (resolutionofuncertainty)and:probability↑,surprise↓,information↓e.g.:

nosurprise,noinformation,information()>information()So,theamountofinformationisrelatedtotheinverseoftheprobabilityofoccurrence.109.2Uncertainty,Information,andEntropyAmountofinformationProperties:

Forbase2--unitcalledbit

(9.4)119.2Uncertainty,Information,andEntropyEntropy--meanofI(sk)

Itisameasureoftheaverageinformationcontentpersourcesymbol.Definition:(9.9)129.2Uncertainty,Information,andEntropySomePropertiesofEntropy

BoundaryLowerbound:ifandonlyif forsomek--nouncertaintyUpperbound:ifandonlyif

forallk(可用拉式乘子法证明)(9.10)139.2Uncertainty,Information,andEntropyProve:1.Lowerbound149.2Uncertainty,Information,andEntropy2.upperboundSuppose

(Figure9.1)15Figure9.1

Graphsofthefunctionsx

1andlogxversusx.169.2Uncertainty,Information,andEntropyExample9.1

EntropyofBinaryMemorylessSourceEntropyofthesourceEntropyfunction(Figure9.2)H17Figure9.2

EntropyfunctionH(p0).189.2Uncertainty,Information,andEntropyDistinctionbetweenEqu.(9.15)andEqu.(9.16)

TheofEquation(9.15)givestheentropyofadiscretememorylesssourcewithsourcealphabet. TheentropyfunctionEquation(9.16)isafunctionofthepriorprobabilityp0definedontheinterval[0,1].199.2Uncertainty,Information,andEntropyExtensionofadiscretememorylesssourceExtendedsource:Block--consistingofnsuccessivesourcesymbolssourcealphabetdistinctblocks∵discretememorylesssource→statisticallyindependent∴entropy(9.17)209.2Uncertainty,Information,andEntropyExample9.2Entropyofextendedsource

alphabet probabilitiesentropyofthesource entropyoftheextendedsource219.3Source-CodingTheoremWhy? EfficientNeed: Knowledgeofthestatisticsofthesource3.Example :

Variable-lengthcode

Shortcodewords–frequentsourcesymbols Longcodewords–raresourcesymbols4.Requirementsofanefficientsourceencoder:Thecodewordsareinbinaryform.Thesourcecodeisuniquelydecodable.5.Figure9.3showsasourceencodingscheme.22Figure9.3

Sourceencoding.ablockof0sand1s239.3Source-CodingTheoremAssume:

alphabet--Kdifferentsymbolsprobabilityofkthsymbolsk

--pk,

k=0,1,...,K-1

binarycodewordlengthassignedtosymbolsk

--

lkAveragecode-wordlength--averagenumberofbitspersourcesymbolCodingefficiency(9.18)(9.19)Note:efficientwhen

--Minimumpossiblevalueof

249.3Source-CodingTheoremHowistheminimumvaluedetermined?Answer:Shannon’sfirsttheorem--thesource-codingtheorem

Givenadiscretememorylesssourceofentropy,theaveragecode-wordlengthforanydistor-

tionlesssourceencodingschemeisboundedasBACKBackwhen

(9.21)(9.20)259.4DataCompactionWhydatacompaction?

Signalsgeneratedbyphysicalsourcescontaina significantamountofredundantinformation.→notefficient

Requirementofdatacompaction:

Notonlyefficientintermsoftheaveragenumberofbitspersymbolbutalsoexactinthesensethattheoriginaldatacanbereconstructedwithnolossofinformation.--losslessdatacompressionExamplesPrefixCoding,HuffmanCoding,Lempel-ZivCoding269.4.1PrefixCodingDiscretememorylesssource

alphabetstatisticsrequirement

uniquelydecodable

definition:acodeinwhichnocodewordistheprefixofanyothercodeword.codewordof

--Wheremki∈(0,1);n--code-wordlength

calledprefix279.4.1PrefixCodingTable9.2

CodeIandCodeIIInotaprefixcodeCodeIIaprefixcodedecodingusedecisiontree--Figure9.4

Procedure:

1.Startattheinitialstate.2.Checkthereceivedbit.If=1,decodermovestoaseconddecisionpoint,andrepeatstep2.If=0,movestotheterminalstate,andbacktostep1.28Figure9.4

DecisiontreeforcodeIIofTable9.2.e.g.:1011111000…→s1s3s2s0s0

…299.4.1PrefixCodingProperty:

1.uniquelydecodable2.satisfyKraft-McMillanInequality

wherelk

isthecodewordlength.3.instantaneouscodes

Theendofacodewordisalwaysrecognizable.Note:性质1和2只是前缀码的必要条件.(e.g.CodeII,CodeIII满足性质1和2,但只有CodeII是前缀码.)(9.22)309.4.1PrefixCodingProperty:

4.Givenentropy,aprefixcodecanbeconstructedwithanaveragecodewordlength,whichisboundedas:(9.23)319.4.1PrefixCodingSpecialcase:

Theprefixcodeismatchedtothesourceinthat

,underthecondition.Prove:329.4.1PrefixCodingExtendedprefixcode:

Thecodeismatchedtoanarbitraydiscrete

memorylesssourcebythehighorderoftheextendedprefixcode.(→increaseddecodingcomplexity)Prove:Whereistheaveragecode-wordlengthoftheextendedprefixcode.

339.4.2HuffmanCodingAnimportantclassofprefixcodes

Basicidea

Asequenceofbitsroughlyequalinlengthtotheamountofinformationconveyedbythesymbolisassignedtoeachsymbol.

averagecode-wordlengthapproachesentropyEssenceofthealgorithmReplacetheprescribedsetofsourcestatisticswithasimplerone.349.4.2HuffmanCodingEncodingalgorithm1.Splittingstage:(i)Sourcesymbolsarelistedinorderofdecreasingprobability(P).(ii)The2symbolsoflowestPareassigneda0&1.2.Combinethe2symbolsasanewsymbolwithsumP,andreplacethesourcesymbolsasinstep1.3.Repeat2untiltwosymbolsleft.Thenthecodeforeach(original)sourcesymbolisfoundbyworkingbackwardandtracingthesequenceof0sand1sassignedtothatsymbolaswellasitssuccessors.

359.4.2HuffmanCodingExample9.3HuffmanTreeFigure9.5

(a)ExampleoftheHuffmanencodingalgorithm.(Ashighaspossible)(b)Sourcecode.369.4.2HuffmanCodingExample9.3HuffmanTree(Cont.)

Theaveragecode-wordlengthis=2.2Theentropyis=2.12193bitsTwoobservations:Theaveragecode-wordlengthexceedstheentropybyonly3.67percent.Theaveragecode-wordlengthdoesindeedsatisfytheEquation(9.23).379.4.2HuffmanCodingExample9.3HuffmanTree(Cont.)Notes:1.Encodingprocessisnotunique.(i)Arbitraryassignments

of0&1tothelasttwosourcesymbols.→trivialdifferences(ii)Ambiguousplacementofacombinedsymbolwhenitsprobabilityisequaltoanotherprobability.(ashighorlowaspossible?)→noticeabledifferences

Answer:

2.Requiresprobabilisticmodelofthesource.(Drawback)High,variance↓;Low,variance↑389.4.3Lempel-ZivCodingProblemofHuffmancode1.Itrequiresknowledgeofaprobabilisticmodelofthesource.Inpractice,sourcestatisticsarenotalwaysknownapriori.2.Storagerequirementspreventitfromcapturingthehigher-orderrelationshipsbetweenwordsandphrasesinmodelingtext.→efficiencyofthecode↓AdvantageofLempel-Zivcoding

intrinsicallyadaptiveandsimplertoimplementthanHuffmancoding399.4.3Lempel-ZivCodingBasicideaofLempel-Zivcode

EncodingintheLempel-Zivalgorithmisaccomplishedbyparsingthesourcedatastreamintosegments

thataretheshortestsubsequencesnotencounteredpreviously.

Forexample:(pp.580)

inputsequence

000101110010100101...Assume:Subsequencesstored:0,1Datatobeparsed:000101110010100101...

Result:codebookinFigure9.6

40Figure9.6

IllustratingtheencodingprocessperformedbytheLempel-Zivalgorithmonthebinarysequence000101110010100101....NumericalPositions:123456789Subsequences: 01000101110010100101Numericalrepresentations: 11124221416162Binaryencodedblocks: 0010

001110010100100011001101Binaryencodedrepresentationofthesubsequence=(binarypointertothesubsequence)+(innovationsymbol)419.4.3Lempel-ZivCodingThedecoderisjustassimpleastheencoder.

BasicconceptFixed-lengthcodesareusedtorepresentavariablenumberofsourcesymbols.→Suitableforsynchronoustransmission.Basicconcept1.Inpractice,fixedblocksof12bitslong →acodebookof4096entries2.standardalgorithmforfilecompression.Achievesacompactionofapproximately55%forEnglishtext.429.5DiscreteMemorylessChannels

AdiscretememorylesschannelisastatisticalmodelwithaninputXandanoutputYthatisanoisyversionX;bothXandYarerandomvariables.(seeFigure9.7)

inputalphabetoutputalphabettransitionprobabilitiesDefinition(9.31)(9.32)foralljandk43Figure9.7

Discretememorylesschannel.Discrete---bothofalphabetsXandYhavefinitesizesmemoryless--currentoutputsymboldependsonlyonthecurrent inputsymbolandnotanyofthepreviousones.449.5DiscreteMemorylessChannelsChannelmatrix(ortransitionmatrix)(9.35)Note:row--fixedchannelinputcolumn--fixedchanneloutputforallj459.5DiscreteMemorylessChannelsNOTE:jointprobabilitydistributionmarginalprobabilitydistributioninputprobabilitydistribution469.5DiscreteMemorylessChannelsExample9.4BinarysymmetricchannelFigure9.8Transitionprobabilitydiagramofbinarysymmetricchannel.479.6MutualInformation

HowcanwemeasuretheuncertaintyaboutXafterobservingY?Themean(9.40)(9.41)Answer:conditionalentropy--theamountofuncertaintyremainingaboutthechannelinputafterthechanneloutputhasbeenobserved.489.6MutualInformationMutualinformationH(X)--uncertaintyaboutthechannelinputbeforeobservingtheoutputH(X|Y)--uncertaintyaboutthechannelinputafter

observingtheoutputH(X)-H(X|Y)--uncertaintyaboutthechannelinputthatisresolvedbyobservingthechanneloutput(9.43)(9.44)499.6.1PropertiesofMutualInformationProperty1--symmetric

Property2--nonnegativeProperty3

Relatedtothejointentropyofthechannelinputandchanneloutputby(9.54)(9.50)(9.45)50Figure9.9

Illustratingtherelationsamongvariouschannelentropies.519.7ChannelCapacityDiscretememorylesschannelhere

Themutualinformationofachannelthereforedependsnotonlyonthechannelbutalsoonthewayinwhichthechannelused.(9.49)529.7ChannelCapacityDefinitionWedefinethechannelcapacityofadiscretememoryless

channelasthemaximummutualinformationI(X;Y)inanysingleuseoftheChannel(i.e.,signalinginterval),wherethemaximizationisoverallpossibleinputprobabilitydistributionsonX.(9.59)Subjecttoandforallj539.7ChannelCapacityNote:1.Cismeasuredinbitsperchanneluse,orbitspertransmission.2.Cisafunctiononlyofthetransitionprobabilities,whichdefinethechannel.3.ThevariationalproblemoffindingthechannelcapacityCisachallengingtask.549.7ChannelCapacityExample9.5BinarysymmetricchannelTransitionprobability(seefigure9.8)(SeeFigure9.10)Observations:1.Noisefree,p

=0,C=1(maximumvalue)2.Useless,p=1/2,C=0(minimumvalue)55Figure9.10

Variationofchannelcapacityofabinarysymmetricchannelwithtransitionprobabilityp.569.8Channel-CodingTheoremGoalIncreasetheresistanceofadigitalcommunicationsystemtochannelnoise.Why?noise→error

Figure9.11

Blockdiagramofdigitalcommunicationsystem.579.8Channel-CodingTheoremBlockcodes(n,k);coderate:r=k/nQuestion:Doesthereexistachannelcodingschemesuchthattheprobabilitythatamessagebitwillbeinerrorislessthananypositivenumberε(i.e.,arbitrarilysmallprobabilityoferror),andyetthechannelcodingschemeisefficientinthatthecoderateneednotbetoosmall?Channelcoding--introducecontrolledredundancy

toimprovereliabilitySourcecoding--reduce

redundancytoimprove efficiency589.8Channel-CodingTheoremAnswer:Shannon’ssecondtheorem(Channelcodingtheorem)1. IfExistsacodingscheme.C/Tc--criticalrate2.IfNot.ThetheoremspecifiesthechannelcapacityCasafundamentallimitontherateatwhichthetransmissionofreliableerror-freemessagescantakeplaceoveradiscretememoryless

channel.Back(9.61)(9.62)averageinformationrate≤channelcapacityperunittime599.8Channel-CodingTheoremNOTE:Anexistenceproof.(Donottellushowtoconstructagoodcode?)Nopreciseresultfortheprobabilityofsymbolerror(Pe)afterdecodingthechanneloutput.(lengthofthecode↑,Pe→0)Powerandbandwidthconstraintswerehiddeninthediscussionpresentedhere.(showupinthechannelmatrixPofthediscretememorylesschannel.)609.8Channel-CodingTheoremApplicationofthechannelcodingtheoremtobinarysymmetricchannelsSourceTs0,1sourceentropy1bitpersymbolinformationrate1/TsbpsafterencodingTccoderatertransmissionrate1/Tcsymbols/sThen,ifTheprobabilityoferrorcanbemadearbitrarilylowbytheuseofasuitablechannelencodingscheme.andFor,thereexistsacodecapableofachievinganarbitrarilylowprobabilityoferror.Back619.8Channel-CodingTheoremExample9.6RepetitioncodeBSCC=0.9192channelcodingtheorem→foranyε>0and ,thereexistsacodeoflengthnlargeenough&r&appropriatedecodingalgorithm,suchthatPe<ε.Seefigure9.1262Figure9.12

Illustratingsignificanceofthechannelcodingtheorem.639.8Channel-CodingTheoremExample9.6Repetitioncode(1,n)n=2m+1ifn=3,0->000,1->111decodingmajorityrule

m+1ormorebitsreceivedincorrectly→errorAverageprobabilityoferrorCharacteristic:exchangeofcoderateformessagereliability→Table9.3(r↓,Pe↓)649.9DifferentialEntropyandMutualInformationforContinuousEnsemblesXacontinuousrandomvariablefX(x)theprobabilitydensityfunctionWehave(9.66)h(X),thedifferentialentropyofX.Note:ItisnotameasureoftherandomnessofX.Itisdifferentfromordinaryorabsoluteentropy.659.9DifferentialEntropyandMutualInformationforContinuousEnsemblesAssumeXintheinterval,probabilityOrdinaryentropyofthecontinuousrandomvariableX669.9DifferentialEntropyandMutualInformationforContinuousEnsemblescontinuousrandomvectorconsistingofnrandomvariablesX1,X2,...,Xnthejointprobabilitydensityfunctionof

thedifferentialentropy

(9.68)679.9DifferentialEntropyandMutualInformationforContinuousEnsemblesExample9.7UniformdistributionArandomvariableXuniformlydistributedovertheinterval(0,a).TheprobabilitydensityfunctionThen,weget(9.69)Note:log2a<0fora<1.Unlikeadiscreterandomvariable,thedifferentialentropyofacontinuousrandomvariablecanbenegative.689.9DifferentialEntropyandMutualInformationforContinuousEnsemblesExample9.8GaussiandistributionX,Yrandomvariables,use(9.12)(9.70)(9.71)(9.72)Assume:1.X,Yhavethesamemeanandthesamevariance.2.XisGaussiandistributed,as699.9DifferentialEntropyandMutualInformationforContinuousEnsembles(9.73)then,(9.74)(9.75)(9.76)∵forY∴709.9DifferentialEntropyandMutualInformationforContinuousEnsemblesCombining(9.75)and(9.76),(9.77)whereequalityholds,andonlyif,fY(x)=fX(x)

.Summarize(twoentropicpropertiesofaGaussianrandomvariable)Forafinitevariance,theGaussianrandomvariablehasthelargestdifferentialentropyattainablebyanyrandomvariable.TheentropyofaGaussianrandomvariableXisuniquelydeterminedbythevarianceofX(i.e.,itisindependentofthemeanofX).719.9.1MutualInformationApairofcontinuousrandomvariablesXandYMutualinformation(9.78)Properties(9.79)(9.80)(9.81)729.9.1MutualInformationh(X),h(Y)thedifferentialentropyofX,Y.Where:h(X|Y)istheconditionaldifferentialentropyofX,givenY;h(Y|X)istheconditionaldifferentialentropyofY,givenX;(9.82)Conditionaldifferentialentropy739.10InformationCapacityTheoremInformationcapacitytheoremforband-limited,power-limitedGaussianchannels.signalX(t)azero-meanstationaryprocess,band-limitedtoBhertz.Tseconds,transmittedoveranoisychannelThenumberofsamples(9.83)XkthecontinuousrandomvariablesobtainedbyuniformsamplingoftheprocessX(t)attheNyquist

rateof2Bsamplespersecond.K=1,2,...,K749.10InformationCapacityTheoremNoise

AWGN,zeromean,powerspectraldensity=N0/2,band-limitedtoBhertz.ThenoisesampleNkisGaussianwithzeromeanandvariancegivenbyFigure9.13Modelofdiscrete-time,memorylessGaussianchannel.(9.84)(9.85)Thesamplesofreceivedsignal759.10InformationCapacityTheoremThecosttoeachchannelinput,(9.86)wherePistheaveragetransmittedpower.TheinformationcapacityofthechannelThemaximumofthemutualinformationbetweenthechannelinputXkandthechanneloutputYkoveralldistributionsontheinputXkthatsatisfythepowerconstraintofEquation(9.86).(9.87)769.10InformationCapacityTheorem(9.88)(9.89)(9.90)whereMaximizing,requiresmaximizing.Fortobemaximum,hastobeaGaussianrandomvariable.Thatis,thesamplesofthereceivedsignalrepresentanoiselikeprocess.Next,sinceisGaussianbyassumption,thesampleofthetransmittedsignalmustbeGaussiantoo.Xk

,Nk

areindependent779.10InformationCapacityTheoremso(9.91)ThemaximizationspecifiedinEquation(9.87)isattainedbychoosingthesamplesofthetransmittedsignalfromanoiselikeprocessofaaveragepowerP.ThreestagesfortheevaluationoftheinformationcapacityC1.ThevarianceofYk=so(9.92)789.10InformationCapacityTheorem2.ThevarianceofNk=(9.93)so3.Informationcapacity(9.94)equivalentform(K/TtimesC)(9.95)799.10InformationCapacityTheoremShannon’sthirdtheorem,theinformationcapacitytheorem:TheinformationcapacityofacontinuouschannelofbandwidthBhertz,perturbedbyadditivewhiteGaussiannoiseofpowerspectraldensityN0/2andlimitedinbandwidthtoB,isgivenbywherePistheaveragetransmittedpower.Thechannelcapacitytheoremdefinesthefundamentallimitontherateoferror-freetransmissionforapower-limited,band-limitedGaussianchannel.Toapproachthislimit,thetransmittedsignalmusthavestatisticalpropertiesapproximatingthoseofwhiteGaussiannoise. Back809.10.1SpherePackingPurpose:Forsupportingtheinformationcapacitytheorem.Anencodingscheme,yieldsKcodewords,codewordlength(numberofbits)=nPowerconstraint:nP,Paveragepowerperbit.Thereceivedvectorofnbits,Gaussiandistributed,MeanequaltothetransmittedcodewordVarianceequalto,thenoisevariance.819.10.1SpherePackingWithhighprobability,thereceivedvectorliesinsideasphereofradius,centeredonthetransmittedcodeword.Thissphereisitselfcontainedinalargersphereofradius,whereistheaveragepowerofthereceivedvector.Seefigure9.14Figure9.14

Thesphere-packingproblem.829.10.1SpherePackingQuestion:Howmanydecodingspherescanbepackedinsidethelargesphereofreceivedvectors?Inotherwords,howmanycodewordscanweinfactchoose?Firstrecognizethatthevolumeofann-dimensionalsphereofradiusrmaybewrittenas;isascalingfactor.Statements1.Thevolumeofthesphereofreceivedvectorsis2.Thevolumeofthedecodingsphereis839.10.1SpherePackingThemaximumnumberbenonintersectingdecodingspheresthatcanbepackedinsidethesphereofpossiblereceivedvectorsis(9.96)Example9.9Reconfigurationofconstellationforreducedpower64-QAMFigure9.159.15bhasanadvantageover9.15a:asmallertransmittedaveragesignalenergypersymbolforthesameBERonanAWGNchannel84Figure9.15

(a)Square64-QAMconstellation.(b)Themosttightlycoupledalternativetothatofparta.HighSNRonAWGNchannel,thesameBERSquaredEuclideandistancesfromthemessagepointstotheoriginb<a859.11ImplicationsoftheInformationCapacityTheoremIdealsystemRb=CAveragetransmittedpower(9.97)accordingly,theidealsystemisdefinedby(9.98)(9.99)signalenergy-per-bittonoisepowerspectraldensityratioAnidealsystemisneededtoassesstheperformanceofapracticalsystem.869.11ImplicationsoftheInformationCapacityTheorembandwidth-efficiencydiagramAplotofbandwidthefficiencyRb/BversusEb/N0.(Figure9.16)wherethecurvelabeled”capacityboundary”correspondstotheidealsystemforwhichRb=C.Observations:1.Forinfinitebandwidth,(9.100)ThisvalueiscalledShannonlimitforanAWGNchannel,assumingacoderateofzero.(-1.6dB)879.11ImplicationsoftheInformationCapacityTheoremFigure9.16

Bandwidth-efficiencydiagram.889.11ImplicationsoftheInformationCapacityTheorem(9.101)2.Thecapacityboundary,definedbythecurveforthecriticalbitrateRb=C.Rb<C,error-freetransmissionRb>C,error-freetransmissionisnotpossible3.Thediagramhighlightspotentialtrade-offsamongEb/N0,Rb/B,andprobabilityofsymbolerrorPe.899.11ImplicationsoftheInformationCapacityTheoremExample9.10M-aryPCMAssumption:

Thesystemoperatesabovethethreshold.Theaverageprobabilityoferrorduetochannelnoiseisnegligible.acodeword:ncodeelements,eachhavingoneofMpossiblediscreteamplitudelevels.noisemargin:sufficientlylargetomaintainanegligibleerrorrateduetochannelnoise.

↓TheremustbeacertainseparationbetweentheseMpossiblediscreteamplitudelevels,kconstant,noisevariance,BchannelbandwidthTheaveragetransmittedpowerwillbeleastiftheamplituderangeissymmetricalaboutzero.909.11ImplicationsoftheInformationCapacityTheorem(9.102)Thediscreteamplitudelevels,normalizedwithrespecttotheseparation,willhavethevaluetheaveragetransmittedpower(假设先验等概)Whertz,highestfrequencycomponent2W,sampledrateL,representationlevelsofquantizer(equallylikely)themaximumrateofinformationtransmission(9.103)919.11ImplicationsoftheInformationCapacityTheorem(9.104)Forauniquecodingprocess(9.105)(9.106)(9.107)929.11ImplicationsoftheInformationCapacityTheorem(9.108)Brequiredtotransmitarectangularpulseofduration1/2nWiswhereisaconstantwithavaluelyingbetween1and2.Using=1,(minimumvalue)TheyareidenticaliftheaveragetransmittedpowerinthePCMsystemisincreasedbythefactork2/12,comparedwiththeidealsystem.PowerandbandwidthinaPCMsystemareexchange

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论