版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宣武2010一模朝阳2010一模崇文2010一模五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知P()和Q(1,)是抛物线上的两点.(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值.24.在△ABC中,∠ACB=45º.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=求线段CP的长.(用含的式子表示),,CD=,25.已知抛物线经过点A(1,3)和点B(2,1).(1)求此抛物线解析式;(2)点C、D分别是轴和轴上的动点,求四边形ABCD周长的最小值;(3)过点B作轴的垂线,垂足为E点.点P从抛物线的顶点出发,先沿抛物线的对称轴到达F点,再沿FE到达E点,若P点在对称轴上的运动速度是它在直线FE上运动速度的倍,试确定点F的位置,使得点P按照上述要求到达E点所用的时间最短.(要求:简述确定F点位置的方法,但不要求证明)大兴2010一模五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图10-1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①请直接写出图10-1中线段BG、线段DE的数量关系及所在直线的位置关系;②将图10-1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图10-2、如图10-3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图10-2证明你的判断.(2)将原题中正方形改为矩形(如图10-4~10-6),且,试判断(1)①中得到的结论哪个成立,哪个不成立?并写出你的判断,不必证明.(3)在图10-5中,连结、,且,则=.24.若是关于的一元二次方程有如下关系:的两个根,则方程的两个根和系数.我们把它们称为根与系数关系定理.如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:请你参考以上定理和结论,解答下列问题:设二次函数的图象与x轴的两个交点为,抛物线的顶点为C,显然为等腰三角形.(1)当(2)当为等腰直角三角形时,求为等边三角形时,.(3)设抛物线与x轴的两个交点为A、B,顶点为C,且,试问如何平移此抛物线,才能使?25.已知抛物线()与轴相交于点,顶点为.直线相交于点.分别与轴,轴相交于两点,并且与直线(1)填空:试用含的代数式分别表示点与的坐标,则;(2)如图11,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.(图11)房山2010一模五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:抛物线:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求抛物线的解析式和顶点P的坐标;(2)将抛物线沿x轴翻折,再向右平移,平移后的抛物线的顶点为M,当点P、M关于点B成中心对称时,求平移后的抛物线的解析式;(3)直线与抛物线、的对称轴分别交于点E、F,设由点E、P、F、M构成的四边形的面积为s,试用含m的代数式表示s.24.如图,在梯形ABCD中,AD∥BC,∠B=,AD=AB=2,点E是AB边上一动点(点E不与点A、B重合),连结ED,过ED的中点F作ED的垂线,交AD于点G,交BC于点K,过点K作KM⊥AD于M.(1)当E为AB中点时,求的值;(2)若(3)若则,则的值等于;(为正整数),的值等于(用含的式子表示).25、如图,在平面直角坐标系中,直线l1:交x轴、y轴于A、B两点,点M(m,n)是线段AB上一动点,点C是线段OA的三等分点.(1)求点C的坐标;(2)连接CM,将△ACM绕点M旋转180°,得到△A’C’M.①当BM=AM时,连结A’C、AC’,若过原点O的直线l2将四边形A’CAC’分成面积相等的两个四边形,确定此直线的解析式;②过点A’作A’H⊥x轴于H,当点M的坐标为何值时,由点A’、H、C、M构成的四边形为梯形?丰台2010一模五、解答题(共3小题,共22分)23.(本小题满分7分)已知二次函数.(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;(3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点B的左边),一个动点P自A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.24.(本小题满分7分)直线CD经过的顶点C,CA=CB.E、F分别是直线CD上两点,且.的内部,且E、F在射线CD上,请解决下面两个问题:(填“”,“”或“”号);(1)若直线CD经过①如图1,若,则②如图2,若,若使①中的结论仍然成立,则与应满足的关系是;(2)如图3,若直线CD经过的外部,,请探究EF、与BE、AF三条线段的数量关系,并给予证明.ABCEFDDABCEFADFCEB图1图2图325.(本小题满分8分)已知抛物线.(1)求抛物线顶点M的坐标;(2)若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.密云2010一模六、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?(3)是反比例函数图象上的一动点,其中轴,交轴于点;过点作直线过点作直线轴交轴于点,交直线的面积为6时,请判断线段于点.当四边形与的大小关系,并说明理由.24.如图,将腰长为的等腰Rt△ABC(是直角)放在平面直角坐标系中的第二象限,使顶点A在y轴上,顶点B在抛物线上,顶点C在x轴上,坐标为(,0).,点B的坐标为(1)点A的坐标为;(2)抛物线的关系式为,其顶点坐标为;(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达的位置.请判断点、是否在(2)中的抛物线上,并说明理由.25.如图,在梯形中,,梯形的高为4.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).(1)当时,求的值;(2)试探究:为何值时,为等腰三角形.平谷2010一模七、解答题(共22分,其中23题7分、24题8分,25题7分)23.已知:关于的一元二次方程(m为实数)(1)若方程有两个不相等的实数根,求的取值范围;(2)在(1)的条件下,求证:无论取何值,抛物线总过轴上的一个固定点;(3)若是整数,且关于的一元二次方程有两个不相等的整数根,把抛物线向右平移3个单位长度,求平移后的解析式.24.如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是.(1)求点坐标及的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.25.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由.如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)石景山2010一模五、解答题(本题满分7分)23.已知:与两个函数图象交点为,且,是关于的一元二次方程的两个不等实根,其中为非负整数.(1)求的值;(2)求的值;(3)如果与函数和交于两点(点在点的左侧),线段,求的值.六、解答题(本题满分8分)24.我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质:重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.已知:如图,点为等腰直角三角形别作直线的垂线,垂足分别为点的重心,,直线过点,过三点分.(1)当直线与平行时(如图1),请你猜想线段和三者之间的数量关系并证明;图1图2图3(2)当直线绕点旋转到与不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段三者之间又有怎样的数量关系?请写出你的结论,不需证明.七、解答题(本题满分7分)25.已知:如图1,等边的边长为,一边在轴上且,交轴于点,过点作∥交于点.(1)直接写出点(2)若直线的坐标;将四边形的面积两等分,求的值;(3)如图2,过点的抛物线与轴交于点,为线段上的一个动点,过轴上一点的垂线,垂足为,直线交轴于点,当点在线段上运动时,现给出两作个结论:①②,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.图1图2顺义2010一模五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:抛物线与轴有两个不同的交点.(1)求的取值范围;(2)当为整数,且关于的方程的解是负数时,求抛物线的解析式;(3)在(2)的条件下,若在抛物线和轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长.24.在中,AC=BC,,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作,交直线AB于点H.判断FH与FC的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.25.如图,直线:平行于直线,且与直线:相交于点.(1)求直线、的解析式;(2)直线与y轴交于点A.一动点从点A出发,先沿平行于x轴的方向运动,到达直线上的点后,改为垂直于x轴的方向运动,到达直线上的点处后,再沿平行于x轴的方向运动,到达直线处后,又改为垂直于x轴的方向运动,到达直线上的点处后,仍沿平行于x轴的方向运处上的点动,……照此规律运动,动点依次经过点,,,,,,…,,,…①求点,,,的坐标;②请你通过归纳得出点、的坐标;并求当动点到达处时,运动的总路径的长.延庆2010一模五、解答题(共3个小题,23小题7分,24小题9分,25小题8分,共24分)23.已知:关于的一元二次方程(1)求证:方程①有两个实数根;①.(2)求证:方程①有两个实数根;(3)设方程①的另一个根为,若,为正整数且方程①有两个不相等的整数根时,确定的解析式;关于的二次函数(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离。24.如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.yxAOBPM图1C1C2C3图24-1yxAOBPN图2C1C4QEF图24-225.在图25-1至图25-3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图25-1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图25-1中的CE绕点C顺时针旋转一个锐角,得到图25-2,求证:△FMH是等腰直角三角形;图25-1AHC(M)DEBFG(N)G图25-2AHCDEBFNMAHCDE图25-3BFGMN(3)将图25-2中的CE缩短到图25-3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)海淀2010一模五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23.关于的一元二次方程有实数根,且为正整数.(1)求的值;(2)若此方程的两根均为整数,在平面直角坐标系中,抛物线与轴交于、两点(在左侧),与轴交于点.点为对称轴上一点,且四边形为直角梯形,求的长;(3)将(2)中得到的抛物线沿水平方向平移,设顶点的坐标为,当抛物线与(2)中的直角梯形只有两个交点,且一个交点在边上时,直接写出的取值范围.24.点为抛物线(为常数,)上任一点,将抛物线绕顶点逆时针旋转后得到的新图象与轴交于、两点(点在点的上方),点为点旋转后的对应点.(1)当,点横坐标为4时,求点的坐标;(2)设点,用含、的代数式表示;(3)如图,点在第一象限内,点在轴的正半轴上,点为的中点,平分,,当时,求的值.25.已知:中,,中,,.连接、,点、、分别为、、的中点.(1)如图1,若、、三点在同一直线上,且,则的形状是________________,此时________;图1图2(2)如图2,若、、三点在同一直线上,且,证明,并计算的值(用含的式子表示);(3)在图2中,固定,将绕点旋转,直接写出的最大值.西城2010一模五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程.(1)求证:无论m取任何实数时,方程总有实数根;(2)若关于的二次函数的图象关于y轴对称.①求这个二次函数的解析式;②已知一次函数y1≥y2均成立;,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值(3)在(2)的条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.求二次函数y3=ax2+bx+c的解析式.24.如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,(1)求证:AD=AE;.(2)如图2,点P在BE上,作EF⊥DP于点F,连结AF.求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.图1EBCAD图3EBCAD图2ECBADFP25.如图,在平面直角坐标系xOy中,一次函数B,点C的坐标为(3,0),连结BC.的图象与x轴交于点A,与y轴交于点yOABC11x(1)求证:△ABC是等边三角形;(2)点P在线段BC的延长线上,连结AP,作AP的垂直平分线,垂足为点D,并与y轴交于点D,分别连结EA、EP.①若CP=6,直接写出∠AEP的度数;②若点P在线段BC的延长线上运动(P不与点C重合),∠AEP的度数是否变化?若变化,请说明理由;若不变,求出∠ADP的度数;(3)在(2)的条件下,若点P从C点出发在BC的延长线上匀速运动,速度为每秒1个单位长度.EC与AP于点F,设△AEF的面积为S1,△CFP的面积为S2,y=S1-S2,运动时间为t(t>0)秒时,求y关于t的函数关系式.2010北京中考五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23、已知反比例函数的图象经过点A(,1).(1)试确定此反比例函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年式通勤车租赁合同
- 《动态奖惩机制下装配式建筑质量链参与主体演化博弈研究》
- 《旋后肌综合征“三线定位法”诊断意义及临床应用研究》
- 《渐进式膈肌锻炼对肺癌围手术期患者肺康复效果的影响》
- 《miR-219a-5p在人骨髓间充质干细胞成骨分化中的作用及机制研究》
- 2024年那曲公交车从业资格证考试题库
- 2024年阿坝小型客运从业资格证考试题答案
- 2024年贵港道路旅客运输驾驶员继续教育试题
- 2024年度物流运输合同:物流公司与托运人就货物运输、保险等事项
- 2024年齐齐哈尔道路运输从业资格证考试
- 脑卒中基本知识课件
- 高效沟通与管理技能提升课件
- 消防维保方案 (详细完整版)
- 四年级上册英语课件- M3U1 In the school (Period 3 ) 上海牛津版试用版(共15张PPT)
- 档案馆建设标准
- 高边坡支护专家论证方案(附有大量的图件)
- 苏教版五年级上册数学试题-第一、二单元 测试卷【含答案】
- 人员定位矿用井口唯一性检测系统
- 电力系统数据标记语言E语言格式规范CIME
- 历史纪年与历史年代的计算方法
- 快递物流运输公司 国际文件样本 形式发票样本
评论
0/150
提交评论