2022-2023学年天津市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年天津市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年天津市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年天津市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年天津市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0(t为实数)在l<x<3的范围内有解,则t的取值范围是(

)A.-5<t≤4

B.3<t≤4

C.-5<t<3

D.t>-52.如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=()A. B. C. D.3.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的大小等于()A.25° B.20° C.40° D.50°4.已知压强的计算公式是p=,我们知道,刀具在使用一段时间后,就会变钝.如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是()A.当受力面积一定时,压强随压力的增大而增大B.当受力面积一定时,压强随压力的增大而减小C.当压力一定时,压强随受力面积的减小而减小D.当压力一定时,压强随受力面积的减小而增大5.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.6.如图,在半径为的中,弦长,则点到的距离为()A. B. C. D.7.关于的一元二次方程有一个根为,则的值应为()A. B. C.或 D.8.二次函数y=3(x-2)2-1的图像顶点坐标是()A.(-2,1) B.(-2,-1) C.(2,1) D.(2,-1)9.如图,直线y=2x与双曲线在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0) B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2) D.(﹣2.1)或(2,﹣1)10.下列成语所描述的事件是不可能事件的是()A.日行千里 B.守株待兔 C.水涨船高 D.水中捞月11.下列图形中为中心对称图形的是()A.等边三角形 B.平行四边形 C.抛物线 D.五角星12.下列各式正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,已知两个反比例函数和在第一象限内的图象,设点在上,轴于点交于点轴于点交于点,则四边形的面积为_______________________.14.关于x的一元二次方程的一个根为1,则方程的另一根为______.15.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为_____.16.将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线________;17.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.18.如图,平行四边形中,,.以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点.若用扇形围成一个圆维的侧面,记这个圆锥的底面半径为;若用扇形围成另一个圆锥的侧面,记这个圆锥的底面半径为,则的值为______.三、解答题(共78分)19.(8分)关于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一个根为﹣1,求k的值及方程的另一个根.20.(8分)如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.21.(8分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根.③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.22.(10分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.(1)求点D的坐标:(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.23.(10分)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形AEOD是正方形.24.(10分)如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OACD,求阴影部分的面积;(2)求证:DEDM.25.(12分)已知一个二次函数的图象经过点、和三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.26.如图,已知正方形ABCD的边长为8,点E是DC上的一动点,过点作EF⊥AE,交BC于点F,连结AF.(1)证明:△ADE∽△ECF;(2)若△ADE的周长与△ECF的周长之比为4:3,求BF的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【详解】∵抛物线y=-x2+mx的对称轴为直线x=2,∴,解之:m=4,∴y=-x2+4x,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵关于x的-元二次方程-x2+mx-t=0(t为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴3<t≤4,故选B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2、C【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【详解】解:如图,过A作AD⊥CB于D,设小正方形的边长为1,则BD=AD=3,AB=∴cos∠B=;故选C.【点睛】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键.3、C【解析】连接OA,根据切线的性质,即可求得∠C的度数.【详解】如图,连接OA.∵AC是⊙O的切线,∴∠OAC=90°.∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选C.【点睛】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.4、D【解析】如果刀刃磨薄,指的是受力面积减小;刀具就会变得锋利指的是压强增大.故选D.5、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.6、B【分析】过点O作OC⊥AB于点C,由在半径为50cm的⊙O中,弦AB的长为50cm,可得△OAB是等边三角形,继而求得∠AOB的度数,然后由三角函数的性质,求得点O到AB的距离.【详解】解:过点O作OC⊥AB于点C,如图所示:

∵OA=OB=AB=50cm,

∴△OAB是等边三角形,

∴∠OAB=60°,∵OC⊥AB故选:B【点睛】此题考查了垂径定理、等边三角形的判定与性质、三角函数,熟练掌握垂径定理,证明△OAB是等边三角形是解决问题的关键.7、B【分析】把x=0代入方程可得到关于m的方程,解方程可得m的值,根据一元二次方程的定义m-2≠0,即可得答案.【详解】关于的一元二次方程有一个根为,且,解得,.故选B.【点睛】本题考查一元二次方程的解及一元二次方程的定义,使等式两边成立的未知数的值叫做方程的解,明确一元二次方程的二次项系数不为0是解题关键.8、D【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),

∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).

故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).9、D【解析】试题分析:联立直线与反比例解析式得:,消去y得到:x2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A(1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D.10、D【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】解:A、日行千里是随机事件,故本选项错误;B、守株待兔是随机事件,故本选项错误;C、水涨船高是必然事件,故本选项错误;D、水中捞月是不可能事件,故本选项正确.故选:D.【点睛】此题考查是不可能事件的判断,掌握不可能事件的定义是解决此题的关键.11、B【分析】根据中心对称图形的概念求解.【详解】A、等边三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、抛物线不是中心对称图形,故本选项错误;D、五角星不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【详解】解:A、无法计算,故A错误;B、,故B正确;C、,故C错误;D、,故D错误;故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.二、填空题(每题4分,共24分)13、【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=,S矩形PCOD=3,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积.【详解】解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=×=,S矩形PCOD=3,∴四边形PAOB的面积=3--=1故答案为:1.【点睛】本题考查了反比函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14、-1【详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.15、πa【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长=,那么勒洛三角形的周长为【详解】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长=,∴勒洛三角形的周长为故答案为πa.【点睛】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.16、【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.17、1.【解析】试题分析:∵点A、B是双曲线上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案为1.考点:反比例函数系数k的几何意义.18、1【分析】设AB=a,根据平行四边形的性质分别求出弧长EF与弧长BE,即可求出的值.【详解】设AB=a,∵∴AD=1.5a,则DE=0.5a,∵平行四边形中,,∴∠D=120°,∴l1弧长EF==l2弧长BE==∴==1故答案为:1.【点睛】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.三、解答题(共78分)19、k=1,x=【分析】将x=﹣1代入原方程可求出k值的值,然后根据根与系数的关系即可求出另外一根.【详解】将x=﹣1代入(k+1)x2﹣3x﹣3k﹣2=0,∴k=1,∴该方程为2x2﹣3x﹣5=0,设另外一根为x,由根与系数的关系可知:﹣x=,∴x=.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解题的关键.20、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作图见解析;(3)①不正确,理由见解析;②不能,理由见解析.【分析】(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中即可确定b、c的值,然后配方后即可确定其顶点坐标;(2)连接BC,交对称轴于点P,连接AP、AC.求得C点的坐标后然后确定直线BC的解析式,最后求得其与x=2与直线BC的交点坐标即为点P的坐标;(3)①设D(t,-t2+4t+1),设折线D-E-O的长度为L,求得L的最大值后与当点D与Q重合时L=9+2=11<相比较即可得到答案;②假设四边形DCEB为平行四边形,则可得到EF=DF,CF=BF.然后根据DE∥y轴求得DF,得到DF>EF,这与EF=DF相矛盾,从而否定是平行四边形.【详解】解:(1)将A(-1,0)、B(1,0)分别代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如图1,连接BC,交对称轴于点P,连接AP、AC.∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小.∵点A关于对称轴x=2的对称点是点B(1,0),抛物线y=-x2+4x+1与y轴交点C的坐标为(0,1).∴由几何知识可知,PA+PC=PB+PC为最小.设直线BC的解析式为y=kx+1,将B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴当x=2时,y=3,∴点P的坐标为(2,3).(3)①这个同学的说法不正确.∵设D(t,-t2+4t+1),设折线D-E-O的长度为L,则L=−t2+4t+1+t=−t2+1t+1=−(t−)2+,∵a<0,∴当t=时,L最大值=.而当点D与Q重合时,L=9+2=11<,∴该该同学的说法不正确.②四边形DCEB不能为平行四边形.如图2,若四边形DCEB为平行四边形,则EF=DF,CF=BF.∵DE∥y轴,∴,即OE=BE=2.1.当xF=2.1时,yF=-2.1+1=2.1,即EF=2.1;当xD=2.1时,yD=−(2.1−2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF>EF,这与EF=DF相矛盾,∴四边形DCEB不能为平行四边形.【点睛】本题考查二次函数及四边形的综合,难度较大.21、(1)1;(2)作图见解析;(3)①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(答案不唯一)(4)3,3,2,﹣1<a<1.【解析】(1)把x=-2代入y=x2-2|x|得y=1,

即m=1,

故答案为:1;

(2)如图所示;(3)由函数图象知:①函数y=x2-2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;

(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2-2|x|=1有3个实数根;

②如图,∵y=x2-2|x|的图象与直线y=2有两个交点,

∴x2-2|x|=2有2个实数根;

③由函数图象知:∵关于x的方程x2-2|x|=a有4个实数根,

∴a的取值范围是-1<a<1,

故答案为:3,3,2,-1<a<1.22、(1)(4,3);(2)y=x+x;(3)【分析】(1)根据矩形的性质可知点D的纵坐标为3,代入直线解析式即可求出点D的横坐标,从而可确定点D的坐标;(2)直接将点A、D的坐标代入抛物线解析式即可;(3)当P为抛物线顶点时,△POA面积最大,将抛物线解析式化为顶点式,求出点P的坐标,再计算面积即可.【详解】解:(1)设D的横坐标为x,则根据题意有3=x,则x=4∴D点坐标为(4,3)(2)将A(6,0),D(4,3)代入y=ax+bx中,得解得:∴此抛物线的表达式为:y=x+x;(3)由于△POA底边为OA=6,∴当P为抛物线顶点时,△POA面积最大∴∴∴的最大值为【点睛】本题是一道二次函数与矩形相结合的题目,熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.23、证明见解析.【分析】先根据已知条件判定四边形AEOD为矩形,再利用垂径定理证明邻边相等即可证明四边形AEOD为正方形.【详解】证明:∵OD⊥AB,∴AD=BD=AB.同理AE=CE=AC.∵AB=AC,∴AD=AE.∵OD⊥ABOE⊥ACAB⊥AC,∴∠OEA=∠A=∠ODA=90°,∴四边形ADOE为矩形.又∵AD=AE,∴矩形ADOE为正方形.【点睛】本题考查正方形的判定,解题的关键是先根据已知条件判定四边形AEOD为矩形.24、(1)4-π;(2)参见解析.【解析】试题分析:(1)连接OD,由已知条件可证出三角形ODC是等腰直角三角形,OD的长度知道,∠DOB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论