版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米.将439000用科学记数法表示应为()A.0.439×106 B.4.39×106 C.4.39×105 D.139×1032.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是()A.3 B.﹣3 C.1 D.﹣13.若点都是反比例函数图像上的点,并且,则下列结论中正确的是()A. B.C.随的增大而减小 D.两点有可能在同一象限4.已知关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是().A.k<1 B.k≤1 C.k≤1且k≠0 D.k<1且k≠05.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠BOD=44°,则∠C的度数是()A.44° B.22° C.46° D.36°6.用配方法解方程配方正确的是()A. B. C. D.7.如图,在边长为的小正方形组成的网格中,的三个顶点在格点上,若点是的中点,则的值为()A. B. C. D.8.二次函数的最小值是()A.2 B.2 C.1 D.19.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点10.如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.70° B.45° C.35° D.30°11.如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为()A.40° B.50° C.80° D.100°12.如图,线段CD两个端点的坐标分别为C(4,4)、D(6,2),以原点O为位似中心,在第一象限内将线段CD缩小为线段AB,若点B的坐标为(3,1),则点A的坐标为()A.(0,3) B.(1,2) C.(2,2) D.(2,1)二、填空题(每题4分,共24分)13.如图,在中,,于,已知,则__________.14.直角三角形的直角边和斜边分别是和,则此三角形的外接圆半径长为__________.15.如图,半径为3的圆经过原点和点,点是轴左侧圆优弧上一点,则_____.16.已知点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,则a+b的值为_____.17.已知点B位于点A北偏东30°方向,点C位于点A北偏西30°方向,且AB=AC=8千米,那么BC=________千米.18.如图,在四边形中,,,则的度数为______.三、解答题(共78分)19.(8分)解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).20.(8分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+621.(8分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;(1)求证:△ABE∽△EGB;(2)若AB=4,求CG的长.22.(10分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.23.(10分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.24.(10分)如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:).(1)直接写出上下两个长方休的长、宽、商分别是多少:(2)求这个立体图形的体积.25.(12分)现有四张正面分别印有和四种图案,并且其余完全相同的卡片,现将印有图案的一面朝下,并打乱摆放顺序,请用列表或画树状图的方法解决下列问题:(1)现从中随机抽取一张,记下图案后放回,再从中随机抽取一张卡片,求两次摸到的卡片上印有图案都是轴对称图形的概率;(2)现从中随机抽取-张,记下图案后不放回,再从中随机抽取一张卡片,求两次摸到的卡片上印有图案都是中心对称图形的概率.26.解方程:x2﹣4x﹣12=1.
参考答案一、选择题(每题4分,共48分)1、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将439000用科学记数法表示为4.39×1.
故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【分析】设方程的另一根为t,根据根与系数的关系得到3+t=2,然后解关于t的一次方程即可.【详解】设方程的另一根为t,
根据题意得3+t=2,
解得t=﹣1.
即方程的另一根为﹣1.
所以D选项是正确的.【点睛】本题考查了根与系数的关系:是一元二次方程的两根时,,.3、A【分析】根据反比例函数的图象及性质和比例系数的关系,即可判断C,然后根据即可判断两点所在的象限,从而判断D,然后判断出两点所在的象限即可判断B和A.【详解】解:∵中,-6<0,∴反比例函数的图象在二、四象限,在每一象限,y随x的增大而增大,故C错误;∵∴点在第四象限,点在第二象限,故D错误;∴,故B错误,A正确.故选A.【点睛】此题考查的是反比例函数的图象及性质,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.4、C【解析】分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2-2x+1=1有实数根,则△=b2-4ac≥1.详解:∵a=k,b=-2,c=1,∴△=b2-4ac=(-2)2-4×k×1=4-4k≥1,k≤1,∵k是二次项系数不能为1,k≠1,即k≤1且k≠1.故选C.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5、B【分析】根据圆周角定理解答即可.【详解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故选:B.【点睛】本题考查了圆周角定理,属于基本题型,熟练掌握圆周角定理是关键.6、A【分析】本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:,,∴,.故选:.【点睛】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7、C【分析】利用勾股定理求出△ABC的三边长,然后根据勾股定理的逆定理可以得出△ABC为直角三角形,再利用直角三角形斜边中点的性质,得出AE=CE,从而得到∠CAE=∠ACB,然后利用三角函数的定义即可求解.【详解】解:依题意得,AB=,AC=,BC=,∴AB2+AC2=BC2,
∴△ABC是直角三角形,
又∵E为BC的中点,
∴AE=CE,
∴∠CAE=∠ACB,
∴sin∠CAE=sin∠ACB=.故选:C.【点睛】此题主要考查了三角函数的定义,也考查了勾股定理及其逆定理,首先根据图形利用勾股定理求出三角形的三边长,然后利用勾股定理的逆定理和三角函数即可解决问题.8、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.9、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【详解】已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.【点睛】本题考查三角形外接圆圆心的确定,属基础题.10、C【分析】先根据垂径定理得出=,再由圆周角定理即可得出结论.【详解】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.11、A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.12、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【详解】解:∵在第一象限内将线段CD缩小为线段AB,点B的坐标为(3,1),D(6,2),∴以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∵C(4,4),∴端A点的坐标为:(2,2).故选:C.【点睛】本题考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【详解】在Rt△ABC中,∵∴设AC=4x,BC=5x∴∴故答案为:.【点睛】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.14、1【分析】根据直角三角形外接圆的半径等于斜边的一半解答即可.【详解】解:根据直角三角形的外接圆的半径是斜边的一半,∵其斜边为16∴其外接圆的半径是1;故答案为:1.【点睛】此题要熟记直角三角形外接圆的半径公式:外接圆的半径等于斜边的一半.15、【分析】由题意运用圆周角定理以及锐角三角函数的定义进行分析即可得解.【详解】解:假设圆与下轴的另一交点为D,连接BD,∵,∴BD为直径,,∵点,∴OB=2,∴,∵OB为和公共边,∴,∴.故答案为:.【点睛】本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等以及熟记锐角三角函数的定义是解题的关键.16、1.【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,∴a=2020,b=﹣2019,∴a+b=1.故答案为:1.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的符号是解题关键.17、8【解析】因为点B位于点A北偏东30°方向,点C位于点A北偏西30°方向,所以∠BAC=60°,因为AB=AC,所以△ABC是等边三角形,所以BC=AB=AC=8千米,故答案为:8.18、18°【分析】根据题意可知A、B、C、D四点共圆,由余角性质求出∠DBC的度数,再由同弧所对的圆周角相等,即为所求.【详解】解:∵在四边形中,,∴A、B、C、D四点在同一个圆上,∵∠ABC=90°,,∴∠CBD=18°,∴∠CAD=∠CBD=18°故答案为:18°【点睛】本题考查的是四点共圆、互为余角的概念和同圆中同弧所对的圆周角相等.三、解答题(共78分)19、(1)x=2±;(2)x=或x=.【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x﹣2)2=2,∴x=2±.(2)∵(2x﹣1)2=4(2x﹣1),∴(2x﹣1﹣4)(2x﹣1)=0,∴x=或x=.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.20、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【详解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=,x2=﹣.【点睛】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键.21、(1)证明见解析;(2)CG=6.【分析】(1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;(2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.【详解】(1)证明:∵四边形ABCD为正方形,且∠BEG=90°,∴∠A=∠BEG,∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,∴∠ABE=∠G,∴△ABE∽△EGB;(2)∵AB=AD=4,E为AD的中点,∴AE=DE=2,在Rt△ABE中,BE=,由(1)知,△ABE∽△EGB,∴,即:,∴BG=10,∴CG=BG﹣BC=10﹣4=6.【点睛】本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键22、(1)故答案为100,30;(2)见解析;(3)0.1.【解析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.【详解】解:(1),所以样本容量为100;B组的人数为,所以,则;故答案为,;(2)补全频数分布直方图为:(3)样本中身高低于的人数为,样本中身高低于的频率为,所以估计从该地随机抽取名学生,估计这名学生身高低于的概率为.【点睛】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.23、(1)顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)AB=.【分析】(1)先把抛物线解析式配方为顶点式,即可得到结果;(2)求出当时的值,即可得到结果.【详解】解:(1)由配方法得y=(x+1)2-3则顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)令y=0,则0=x2+x﹣解得x1=-1+x2=-1-则A(-1-,0),B(-1+,0)∴AB=(-1+)-(-1-)=24、(1)立体图形下面的长方体的长、宽、高分别为;上面的长方体的长、宽、高分别为;(2)这个立体图形的体积为.【分析】(1)根据主视图可分别得出两个长方体的长和高,根据左
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《建设工程施工合同示范文本》
- 幼儿园健康教案《五官很重要》及教学反思
- 2025年运载火箭控制系统仿真实时处理系统合作协议书
- 后勤部门工作参考计划
- 2025年聚甲醛、聚甲醛合金及改性材料项目发展计划
- 大型型货车租赁合同书
- 特别赞助协议书
- 国际航运船只租赁合同
- 商场租赁合同书
- 2025年古马隆树脂项目建议书
- 2024年盾构操作工职业技能竞赛理论考试题库(含答案)
- (西北卷)名校教研联盟2025届高三12月联考英语试卷(含答案解析)
- 江苏省2025年高中学业水平合格考历史试卷试题(含答案详解)
- 大学试卷(示范)
- 高职院校智能制造实验室实训中心建设方案
- 房产交易管理平台行业发展预测分析
- 档案工作人员分工及岗位责任制(4篇)
- GB 4396-2024二氧化碳灭火剂
- 美丽的秋天景色作文500字小学
- 施工单位2025年度安全生产工作总结及计划
- 护理质量委员会会议
评论
0/150
提交评论