




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.2.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则3.如图,点的坐标分别为和,抛物线的顶点在线段上运动,与轴交于两点(在的左侧),若点的横坐标的最小值为0,则点的横坐标最大值为()A.6 B.7 C.8 D.94.如图所示,△的顶点是正方形网格的格点,则的值是()A. B. C. D.5.模型结论:如图①,正内接于,点是劣弧上一点,可推出结论.应用迁移:如图②,在中,,,,是内一点,则点到三个顶点的距离和的最小值为()A. B.5 C. D.6.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是()A. B. C. D.7.下列函数中,图象不经过点(2,1)的是()A.y=﹣x2+5 B.y= C.y=x D.y=﹣2x+38.对于二次函数的图象,下列结论错误的是()A.顶点为原点 B.开口向上 C.除顶点外图象都在轴上方 D.当时,有最大值9.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.210.的倒数是()A. B. C. D.11.某正多边形的一个外角的度数为60°,则这个正多边形的边数为()A.6 B.8 C.10 D.1212.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是()A.x(x+1)=182 B.0.5x(x+1)=182C.0.5x(x-1)=182D.x(x-1)=182二、填空题(每题4分,共24分)13.中山市田心森林公园位于五桂山主峰脚下,占地3400多亩,约合2289000平方米,用科学记数法表示2289000为__________.14.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.15.如图,已知⊙O上三点A,B,C,半径OC=,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为____.16.如图所示,点为平分线上一点,以点为顶点的两边分别与射线,相交于点,,如果在绕点旋转时始终满足,我们就把叫做的关联角.如果,是的关联角,那么的度数为______.17.抛物线的对称轴过点,点与抛物线的顶点之间的距离为,抛物线的表达式为______.18.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.三、解答题(共78分)19.(8分)在平面直角坐标系中,直线交轴于点,交轴于点,,点的坐标是.(1)如图1,求直线的解析式;(2)如图2,点在第一象限内,连接,过点作交延长线于点,且,过点作轴于点,连接,设点的横坐标为,的而积为S,求S与的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,过点作轴,连接、,若,时,求的值.20.(8分)如图,在小山的东侧处有一一热气球,以每分钟28米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达处,这时气球上的人发现,在处的正西方向有一处着火点,5分钟后,在处测得着火点的俯角是15°,求热气球升空点与着火点的距离.(结果保留根号,参考数据:)21.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BE⊥AB,垂足为B,BE=CD连接CE,DE.(1)求证:四边形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的长22.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣1,1)、B(0,﹣2)、C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,(1)在图中画出点P1、P2、P3;(2)继续将点P3绕点A旋转180°得到点P4,点P4绕点B旋转180°得到点P5,…,按此作法进行下去,则点P2020的坐标为.23.(10分)如图,点在轴正半轴上,点是反比例函数图象上的一点,且.过点作轴交反比例函数图象于点.(1)求反比例函数的表达式;(2)求点的坐标.24.(10分)如图,在平行四边形中,过点作,垂足为,连接,为上一点,且.(1)求证:.(2)若,,,求的长.25.(12分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.26.反比例函数与一次函数的图象都过.(1)求点坐标;(2)求反比例函数解析式.
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.2、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.3、B【分析】根据待定系数法求得顶点是A时的解析式,进而即可求得顶点是B时的解析式,然后求得与x轴的交点即可求得.【详解】解:∵点C的横坐标的最小值为0,此时抛物线的顶点为A,
∴设此时抛物线解析式为y=a(x-1)2+1,
代入(0,0)得,a+1=0,
∴a=-1,
∴此时抛物线解析式为y=-(x-1)2+1,
∵抛物线的顶点在线段AB上运动,
∴当顶点运动到B(5,4)时,点D的横坐标最大,
∴抛物线从A移动到B后的解析式为y=-(x-5)2+4,
令y=0,则0=-(x-5)2+4,
解得x=1或3,
∴点D的横坐标最大值为1.
故选:B.【点睛】本题考查了待定系数法求二次函数的解析式以及二次函数的性质,明确顶点运动到B(5,4)时,点D的横坐标最大,是解题的关键.4、B【分析】过点C作CD⊥AB,利用间接法求出△ABC的面积,利用勾股定理求出AB、BC的长度,然后求出CD的长度,即可得到∠B的度数,然后得到答案.【详解】解:如图,过点C作CD⊥AB,∴,∵,,又∵,∴,在Rt△BCD中,,∴,∴;故选:B.【点睛】本题考查了特殊角的三角函数值,勾股定理与网格问题,解题的关键是作出辅助线正确构造直角三角形,利用三角函数值进行求解.5、D【分析】在△DEG右侧作等边三角形DGM,连接FM,由模型可知DF+FG=FM,∴DF+EF+FG的最小值即为线段EM,根据题意求出EM即可.【详解】解:在△DEG右侧作等边三角形DGM,过M作ED的垂线交ED延长线于H,连接FM,EM,由模型可知DF+FG=FM,∴DF+EF+FG的最小值即为EF+FM的最小值,即线段EM,由已知易得∠MDH=30°,DM=DG=,∴在直角△DMH中,MH=DM=,DH=,∴EH=3+3=6,在直角△MHE中,【点睛】本题主要考查了学生的知识迁移能力,熟练掌握等边三角形的性质和勾股定理是解题的关键.6、C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:.【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合.7、D【分析】根据题意分别计算出当时的各选项中的函数值,然后进一步加以判断即可.【详解】A:当x=2时,y=−4+5=1,则点(2,1)在抛物线y=−x2+5上,所以A选项错误;B:当x=2时,y==1,则点(2,1)在双曲线y=上,所以B选项错误;C:当x=2时,y=×2=1,则点(2,1)在直线y=x上,所以C选项错误;D:当x=2时,y=−4+3=−1,则点(2,1)不在直线y=−2x+3上,所以D选项正确.故选:D.【点睛】本题主要考查了函数图像上点的坐标的性质,熟练掌握相关概念是解题关键.8、D【分析】根据二次函数的性质逐项判断即可.【详解】根据二次函数的性质,可得:二次函数顶点坐标为(0,0),开口向上,故除顶点外图象都在x轴上方,故A、B、C正确;当x=0时,y有最小值为0,故D错误.故选:D.【点睛】本题考查二次函数的性质,熟练掌握二次函数顶点坐标,开口方向,最值与系数之间的关系是解题的关键.9、B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.10、A【分析】根据乘积为1的两个数互为倒数进行解答即可.【详解】解:∵×1=1,∴的倒数是1.故选A.【点睛】本题考查了倒数的概念,熟记倒数的概念是解答此题的关键.11、A【分析】根据外角和计算边数即可.【详解】∵正多边形的外角和是360,∴,故选:A.【点睛】此题考查正多边形的性质,正多边形的外角和,熟记正多边形的特点即可正确解答.12、D【解析】共送出照片数=共有人数×每人需送出的照片数.根据题意列出的方程是x(x-1)=1.故选D.二、填空题(每题4分,共24分)13、【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:将2289000用科学记数法表示为:.故答案为:.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.14、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).
故答案为:18cm.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.15、1【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【详解】连接OA,∵∠ABC=10°,∴∠AOC=2∠ABC=60°,∵切线PA交OC延长线于点P,∴∠OAP=90°,∵OA=OC=,∴AP=OAtan60°=×=1.故答案为:1.【点睛】本题考查了圆的切线问题,掌握圆周角定理、圆的切线性质是解题的关键.16、【分析】由已知条件得到,结合∠AOP=∠BOP,可判定△AOP∽△POB,再根据相似三角形的性质得到∠OPA=∠OBP,利用三角形内角和180°与等量代换即可求出∠APB的度数.【详解】∵∴∵OP平分∠MON∴∠AOP=∠BOP∴△AOP∽△POB∴∠OPA=∠OBP在△OBP中,∠BOP=∠MON=25°∴∠OBP+∠OPB=∴∠OPA+∠OPB=155°即∠APB=155°故答案为:155°.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定定理是解题的关键.17、y=-x2-2x或y=-x2-2x+8【分析】根据题意确定出抛物线顶点坐标,进而确定出m与n的值,即可确定出抛物线解析式.【详解】∵抛物线的对称轴过点,∴设顶点坐标为:根据题意得:,解得:或抛物线的顶点坐标为(-1,1)或(-1,9),可得:,或,解得:,或,
则该抛物线解析式为:或,
故答案为:或.【点睛】本题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.18、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,
则×16π×10=80π.故答案为:80π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.三、解答题(共78分)19、(1);(2);(3)【分析】(1)求出点B的坐标,设直线解析式为,代入A、B即可求得直线解析式;(2)过点作于点,延长交于点,通过证明≌,可得,,故点的横坐标为,,设,可求得,故S与的函数关系式为;(3)延长、交于点,过点作点,连接、,先证明≌,可得,通过等量代换可得,再由勾股定理可得,结合即可解得.【详解】(1)∵∴,∴∴点设直线解析式为解得,∴直线解析式为(2)过点作于点,延长交于点,∵轴,轴∴∴∴四边形是矩形,∴,∴,∴≌∴,,点的横坐标为,,设,则,∵∴∴∴(3)延长、交于点,过点作点,连接、由(2)可知,∴又∵∵∴∴,,延长交于点,∵,∴∵∴,,∴≌∴∵∴∴∴∵∴∵∴由勾股定理可得∵∴,∴【点睛】本题考查了直线解析式的几何问题,掌握直线解析式的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.20、.【分析】过D作DH⊥BA于H,在Rt△DAH中根据三角函数即可求得AH的长,然后在Rt△DBH中,求得BH的长,进而求得BA的长.【详解】解:由题意可知AD=(30+5)×28=980,
过D作DH⊥BA于H.
在Rt△DAH中,DH=AD•sin60°=980×=490,AH=AD×cos60°=980×=490,
在Rt△DBH中,BH==490×(2+)=1470+980,∴BA=BH-AH=(1470+980)-490=980(1+)(米).
答:热气球升空点A与着火点B的距离为980(1+)(米).【点睛】本题主要考查了仰角和俯角的定义,一般三角形的计算可以通过作高线转化为直角三角形的计算.21、(1)见详解,(2)DE=2【解析】(1)利用有一组对边平行且相等的四边形是平行四边形,有一个角是90°的平行四边形是矩形即可证明,(2)利用30°角所对直角边是斜边的一半和勾股定理即可解题.【详解】解:(1)∵CD⊥AB,BE⊥AB,∴CD∥BE,∵BE=CD,∴四边形CDBE是矩形,(2)在Rt△ABC中,∵∠ABC=30°,AC=2,∴AB=4,(30°角所对直角边是斜边的一半)∴DE=BC=2(勾股定理)【点睛】本题考查了矩形的证明和特殊直角三角形的性质,属于简单题,熟悉判定方法是解题关键.22、(1)见解析;(2)(﹣2,﹣2)【分析】(1)利用网格特点和旋转的性质画出点P1、P2、P3即可;(2)画出P1~P6,寻找规律后即可解决问题.【详解】解:(1)点P1、P2、P3如图所示,(2)(﹣2,﹣2)解析:如图所示:P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2)P5(2,﹣2),P6(0,2)∵6次一个循环∴2020÷6=336...4∴P2020(﹣2,﹣2)【点睛】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.23、(1);(2)【分析】(1)设反比例函数的表达式为,将点B的坐标代入即可;(2)过点作于点,根据点B的坐标即可得出,,然后根据,即可求出AD,从而求出AO的长即点C的纵坐标,代入解析式,即可求出点的坐标.【详解】解:(1)设反比例函数的表达式为,∵点在反比例函数图象上,∴.解得.∴反比例函数的表达式为.(2)过点作于点.∵点的坐标为,∴,.在中,,∴.∴.∵轴,∴点的纵坐标为6.将代入,得.∴点的纵坐标为.【点睛】此题考查的是反比例函数与图形的综合题,掌握用待定系数法求反比例函数的解析式和利用锐角三角函数解直角三角形是解决此题的关键.24、(1)见解析;(2)【解析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电动音乐车轮项目可行性研究报告
- 2025年玲珑锅项目可行性研究报告
- 2025年玫瑰豆沙项目可行性研究报告
- 2025年熔金钳项目可行性研究报告
- 湖南省邵阳市城区市级名校2024-2025学年初三4月第二次模拟考试英语试题含答案
- 上海市华师大二附中2024-2025学年高三生物试题理第三次调研考试试题解析含解析
- 衢州市重点中学2024-2025学年高三5月模拟考试自选试题含解析
- 新疆科技学院《列车运行控制技术》2023-2024学年第二学期期末试卷
- 2025春新版一年级下册语文.课文重点知识归纳
- 长春工程学院《微生物与生化药学专论》2023-2024学年第二学期期末试卷
- 东北三省四市教研联合体2025年高考模拟考试(一)地理试题(含答案)
- 2024-2025学年人教版七年级数学(下)期中试卷(考试范围:第7-9章)(含解析)
- 2025-2030年中国CAE软件行业市场行情监测及发展前景研判报告
- 术前讨论制度课件
- 2025-2030中国工程造价咨询行业市场深度调研及竞争格局与投资研究报告
- 购物卡采购合同
- 2025年光伏项目劳务分包合同模板
- 2024福建省能源石化集团有限责任公司秋季社会招聘120人笔试参考题库附带答案详解
- 2025年四川省对口招生(农林牧渔类)《农业经营与管理》考试复习题库(含答案)
- 2024年北京石景山区事业单位招聘笔试真题
- 脑心健康管理师的学习汇报
评论
0/150
提交评论