湖南省长沙市第十九中学2021-2022学年高二数学理月考试卷含解析_第1页
湖南省长沙市第十九中学2021-2022学年高二数学理月考试卷含解析_第2页
湖南省长沙市第十九中学2021-2022学年高二数学理月考试卷含解析_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市第十九中学2021-2022学年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数=()A.i B.﹣i C.1﹣i D.1+i参考答案:A【考点】复数代数形式的乘除运算.【分析】按照复数除法的运算法则,分子分母同乘以1+i,计算化简即可.【解答】解:==i.故选A.2.点M(x0,y0)是圆x2+y2=r2内圆心以外的一点,则直线x0x+y0y=r2与该圆的位置关系是(

)(A)相切

(B)相交

(C)相离

(D)相切或相交参考答案:C3.从一楼到二楼的楼梯共有级台阶,每步只能跨上1级或2级,走完这级台阶共有种走法,则下面猜想正确的是(

)A、

B、

C、

D、参考答案:A4.两圆相交于两点(k,1)和(1,3),两圆的圆心都在直线x﹣y+=0上,则k+c=()A.﹣1 B.2 C.3 D.0参考答案:C【考点】JE:直线和圆的方程的应用.【分析】由相交弦的性质,可得AB与直线x﹣y+=0垂直,且AB的中点在这条直线x﹣y+=0上;由AB与直线x﹣y+=0垂直,可得为﹣1,解可得k的值,即可得A的坐标,进而可得AB中点的坐标,代入直线方程可得c=0;进而将k、c相加可得答案.【解答】解:根据题意,由相交弦的性质,相交两圆的连心线垂直平分相交弦,设A(k,1)和B(1,3),可得AB与直线x﹣y+=0垂直,且AB的中点在这条直线x﹣y+=0上;由AB与直线x﹣y+=0垂直,可得=﹣1,解可得k=3,则A(3,1),故AB中点为(2,2),且其在直线x﹣y+=0上,代入直线方程可得,2﹣2+c=0,可得c=0;故k+c=3;故选:C.5.与直线3x-4y+5=0关于x轴对称的直线方程为(

)A.3x-4y-5=0

B.3x+4y+5=0C.3x-4y+5=0

D.3x-4y-5=0参考答案:B6.过椭圆内的一点P(2,﹣1)的弦,恰好被P点平分,则这条弦所在的直线方程是(

)A.5x﹣3y﹣13=0 B.5x+3y﹣13=0 C.5x﹣3y+13=0 D.5x+3y+13=0参考答案:A考点:椭圆的简单性质;中点坐标公式.专题:计算题.分析:设过点P的弦与椭圆交于A1,A2两点,并设出他们的坐标,代入椭圆方程联立,两式相减,根据中点P的坐标可知x1+x2和y1+y2的值,进而求得直线A1A2的斜率,根据点斜式求得直线的方程.解答:解:设过点P的弦与椭圆交于A1(x1,y1),A2(x2,y2)两点,则,且x1+x2=4,y1+y2=﹣2,∴(x1﹣x2)﹣(y1﹣y2)=0,∴kA1A2==.∴弦所在直线方程为y+1=(x﹣2),即5x﹣3y﹣13=0.故选A.点评:本题主要考查了椭圆的简单性质和直线与椭圆的位置关系.涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化7.如图是一个商场某一个时间制定销售计划时的局部结构图,则“计划”受影响的主要要素有A.1个

B.2个

C.3个

D.4个

)参考答案:C略8.甲、乙两颗卫星同时监测台风,根据长期经验得知,甲、乙预报台风准确的概率分别为0.8和0.75.则在同一次预报中,甲、乙两卫星只有一颗预报准确的概率()学A.

0.15

科网B.0.35

C.0.40

D.0.6

参考答案:B9.下列函数中,既是偶函数又在单调递增的函数是()A.

B.

C.

D.参考答案:B10.在不等边三角形中,a为最大边,要想得到为钝角的结论,三边应满足的条件是:A.

B

C

D

参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为.参考答案:[0,]【考点】直线与圆相交的性质.【分析】设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.【解答】解:设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,化简可得0≤a≤,故答案为:[0,].【点评】本题主要考查圆与圆的位置关系的判定,两点间的距离公式,圆和圆的位置关系的判定,属于基础题.12.已知P(4,2)是直线l被椭圆截得线段的中点,则直线l的方程为_______参考答案:试题分析:由题意得,斜率存在,设为k,则直线l的方程为y-2=k(x-4),即kx-y+2-4k=0,代入椭圆的方程化简得

(1+4k2)x2+(16k-32k2)x+64k2-64k-20=0,∴,解得k=-,故直线l的方程为

x+2y-8=01考点:直线与圆锥曲线的关系13.设数列的首项且前项和为.已知向量,满足,则__________.参考答案:

2略14.抛物线形拱桥,当水面离拱顶2米时,水面宽4米,若水面下降1米后,则水面宽是

米参考答案:15.已知,则的值为__________.参考答案:8略16.已知(x+a)2(x﹣1)3的展开式中,x4的系数为1,则a=

.参考答案:2【考点】二项式系数的性质.【分析】由(x+a)2(x﹣1)3=(x2+2ax+a2)(x3﹣3x2+3x﹣1),求出它的展开式中x4的系数即可.【解答】解:(x+a)2(x﹣1)3=(x2+2ax+a2)(x3﹣3x2+3x﹣1),所以它的展开式中,x4的系数为:﹣3+2a=1,解得a=2.故答案为:2.17.函数的单调递增区间是

.参考答案:1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.2017年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图的频率分布直方图.(1)调查公司在采样中,用到的是什么抽样方法?(2)求这40辆小型车辆车速的众数、中位数及平均数的估计值;(3)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.参考答案:(1)系统抽样.

……………1分(2)众数的估计值为最高的矩形的中点,即

……………2分设图中虚线所对应的车速为,则中位数的估计值为:,解得即中位数的估计值为.

……………4分平均数的估计值为:

……………6分(3)车速在的车辆数为:2车速在的车辆数为:4

……………8分设车速在的车辆为,车速在的车辆为,则基本事件有:共15种,其中,车速在的车辆至少有一辆的事件有:……………10分共14种,所以车速在的车辆至少有一辆的概率为

…………….12分19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AP=AB=,点E是棱PB的中点.(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若AD=1,求二面角B﹣EC﹣D的平面角的余弦值.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.(Ⅱ)由BC⊥平面PAB,AD⊥AE.取CE的中点F,连结DF,连结BF,则∠BFD为所求的二面角的平面角,由此能求出二面角B﹣EC﹣D的平面角的余弦值.【解答】(Ⅰ)证明:如图1,由PA⊥底面ABCD,得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,而点E是棱PB的中点,所以AE⊥PB.由题意知BC⊥AB,又AB是PB在面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE.因为AE⊥PB,AE⊥BC,所以AE⊥平面PBC.(Ⅱ)解:由(Ⅰ)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE.在Rt△PAB中,PA=AB=,AE=PB==1.从而在Rt△DAE中,DE==.在Rt△CBE中,CE==,又CD=,所以△CED为等边三角形,取CE的中点F,连结DF,则DF⊥CE,∵BE=BC=1,且BC⊥BE,则△EBC为等腰直角三角形,连结BF,则BF⊥CE,所以∠BFD为所求的二面角的平面角,连结BD,在△BFD中,DF=CD=,BF=,BD==,所以cos∠BFD==﹣,∴二面角B﹣EC﹣D的平面角的余弦值为﹣.【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.20.已知圆C过点A(1,﹣1),B(﹣1,1),且圆心在直线x+y﹣2=0.(1)求圆C的方程;(2)求过点N(3,2)且与圆C相切的直线方程.参考答案:【考点】直线与圆的位置关系.【分析】(1)求出圆心坐标、半径,即可求圆C的方程;(2)分类讨论,利用d=r,即可求过点N(3,2)且与圆C相切的直线方程.【解答】解:(1)由题意知,圆心在线段AB的中垂线上,又QkAB=﹣1,且线段AB的中点坐标为(0,0),则AB的中垂线方程为y=x.联立得圆心坐标为(1,1),半径.所求圆的方程为(x﹣1)2+(y﹣1)2=4.(2)当直线斜率存在时,设直线方程为y﹣2=k(x﹣3)与圆相切,由d=r得,解得.所以直线方程为3x+4y﹣17=0.又因为过圆外一点作圆的切线有两条,则另一条方程为x=3也符合题意,综上,圆的切方程为3x+4y﹣17=0和x=3.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查分类讨论的数学思想,属于中档题.21.如图,在四棱柱中,侧棱,,,,,,.(Ⅰ)求证:(Ⅱ)若直线与平面所成角的正弦值为,求的值;(III)现将与四棱柱形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和

大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的表达式(直接写出答案,不必要说明理由)参考答案:,

略22.已知函数f(x)=axlnx(a≠0,a∈R)(1)求f(x)的单调区间;(2)当x∈(1,e)时,不等式<lnx恒成立,求实数a的取值范围.参考答案:【考点】6K:导数在最大值、最小值问题中的应用;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,通过讨论a的范围,解关于导函数的不等式,求出函数的单调区间即可;(2)问题转化为a>()max或a<>()min,解出即可.【解答】解:(1)函数f(x的定义域为(0,+∞).因为f′(x)=a(lnx+1),令f′(x)=0,解得x=.①当a>0时,随着x变化时,f(x)和f′(x)的变化情况如下:x(0,)(,+∞)f′(x)﹣0+f(x)↘

↗即函数f(x)在(0,)上单调递减,在(,+∞)上单调递增.②当a<0时,随着x变化时,f(x)和f′(x)的变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论