计算机系统的焊点可靠性试验_第1页
计算机系统的焊点可靠性试验_第2页
计算机系统的焊点可靠性试验_第3页
计算机系统的焊点可靠性试验_第4页
计算机系统的焊点可靠性试验_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

焊点可靠性试验的计算机模拟本文介绍,与实际的温度循环试验相比,计算机模拟提供速度与成本节约。在微电子工业中,一个封装的可靠性一般是通过其焊点的完整性来评估的。锡铅共晶与近共晶焊锡合金是在电子封装中最常用的接合材料,提供电气与温度的互联,以及机械的支持。由于元件内部散热和环境温度的变化而产生的温度波动,加上焊锡与封装材料之间热膨胀系统(CTE)的不匹配,造成焊接点的热机疲劳。不断的损坏最终导致元件的失效。在工业中,决定失效循环次数的标准方法是在一个温室内进行高度加速的应力试验。温度循环过程是昂贵和费时的,但是计算机模拟是这些问题的很好的替代方案。模拟可能对新的封装设计甚至更为有利,因为原型试验载体的制造成本非常高。本文的目的是要显示,通过在一个商业有限单元(finiteelement)代码中使用一种新的插入式专门用途的材料子程序,试验可以在计算机屏幕上模拟。建模与试验宁可通过计算程序试验来决定焊点可靠性的其中一个理由是缺乏已验证的专用材料模型和软件包。例如,市场上现有的所有主要的商业有限单元分析代码都对应力分析有效,但是都缺乏对焊点以统一的方式进行循环失效分析的能力。该过程要求一个基于损伤机制理论的专门材料模型和在实际焊点水平上的验证。可以肯定的是,所有主要的有限单元分析代码都允许用户实施其自己的用户定义的插入式材料子程序。直到现在,还不可能测量疲劳试验期间在焊点内的应力场,这对确认材料模型是必须的。在Buffalo大学的电子封装实验室(UB-EPL)开发的一个Moiré干涉测量系统允许在疲劳试验到失效期间的应力场测试。基于热力学原理的疲劳寿命预测模型也已经在UB-EPL开发出来,并用于实际的BGA封装可靠性试验的计算机模拟。在焊点内的损伤,相当于在循环热机负载下材料的退化,用一个热力学构架来量化。损伤,作为一个内部状态变量,结合一个基于懦变的构造模型,用于描述焊点的反映。该模型通过其用户定义的子程序实施到一个商业有限单元包中。预测焊点的可靠性焊接点的疲劳寿命预测对电子封装的可靠性评估是关键的。在微电子工业中预测失效循环次数的标准方法是基于使用通过试验得出的经验关系式。如果使用一个分析方法,通过都是使用诸如Coffin-Manson(C-M)这样的经验曲线。通常,使用接合元件之间的CTE差别,计算出焊接点内最大的预测弹性与塑性应力。大多数时间,使用塑性应变值,是用C-M曲线来预测焊接点的疲劳寿命。通过研究者已经显示,这个方法对BGA封装所产生的结果是保守的。例如,Zhaoetal.已经从冶金学上证明,C-M方法不能用于微结构进化的材料,如锡铅焊锡合金1,2。其理由是C-M方法没有考虑在疲劳期间材料特性的任何变化。C-M方法假设,在每一个热循环中所经历的塑性应变在整个热循环过程中是保持不变的。事实上,焊接点所经历的实际塑性应变在每个循环都由于微结构变粗糙而减少。因此,C-M方法大大地低估了焊接点的疲劳寿命。在本研究中使用一个损伤进化函数来量化焊接点的退化。损伤进化函数是基于热力学的第二定律,并使用熵作为损伤度量。Basaran和Yan已经证明,作为一个系统失调度量的熵可用作固体力学的损伤度量标准3。损伤进化结合到一个统一的粘塑结构模型中(在下面描述),用来描述在热机负载下焊接点的循环疲劳特性。构造模型试验结果显示,相对于懦变或粘塑应变,塑性应变对低循环疲劳寿命的影响是可能忽略的。依赖时间的懦变形支配着焊接点的低循环疲劳寿命1,2。这是因为共晶与近共晶焊锡合金一般预计由于其低熔点(183°C)在高同系温度下工作。在高同系温度下,材料经历很大的懦性变形。因此一个热粘塑结构模型对于建立焊接性能模型是必要的。为了建立近共晶焊锡的第一、第二和第三懦变阶段模型,需要懦变率函数。在高同系温度下的大多数金属与合金的稳定状态塑性变形的动力学可用Dorn懦变方程来描述4。Kashyap与Murty已经从实验上证明,颗粒大小可以重大影响锡铅焊锡合金的懦变特性5。基于他们的实验室试验结果,他们提出了一个懦变定律,修正Dorn方程。应变率描述为温度、扩散率和诸如Young的模数与颗粒大小等材料参数的函数。活性能量随温度而变化,基于已发布的懦变数据而决定。类似地,颗粒大小与应变率成指数关系,试验上确定的颗粒指数。为了模拟材料的循环疲劳特性,需要一个逐步退化的模型。损伤机制为我们提供一个开发损伤进化模型的基本框架。将一个内部损伤变量引入应力应变关系中。随着焊锡退化的增加,损伤变量的值由零上升到一,即代表完全失效。Bassran和Yan已经证明,熵是最准确和最简单的焊点损伤度量标准3。该熵可以描述为失调参数。失调参数的变化产生焊接点的退化。有关失效机制模型的更详细情况可以查阅参考资料3,6。使用前面简要叙述的基于构造模型的损伤机制,消除了需要估算失效循环数的两步过程,即进行失效分析的传统方法。有限单元分析通常计算一个温度循环的塑性应变,然后使用C-M曲线预测该塑性应变值的疲劳寿命。上面提出的模型直接产生每个焊接点的疲劳寿命,以及提供对发生在焊点内的退化过程的视觉显示。有限单元模拟与实验室试验通过基于损伤机制的模型进行了对简单循环剪切试验的几个数字模拟,并比较Pb40/Sn60焊接点的疲劳试验结果。Solomon在对称位移控制的条件下,以不同的塑性应变范围,进行了对Pb40/Sn60焊接点的循环简单剪切试验9。作者报告了对每一个塑性应变范围的失效循环次数,将失效定义为在最终应力下90%的负载下降。图一显示Solomon的试验数据与有限单元模拟之间的失效循环次数的比较。也对经受热循环的一个实际BGA封装的Pb37/Sn63焊接点进行了计算机模拟。试验的BGA封装横截面如图二所示。FR-4印刷电路板和聚合材料的连接器层通过Pb37/Sn63焊接点连接。由于结构的对称性,模拟只画出封装的一半和取网格。

图一、疲劳寿命比较(Solomon的试验与FEM)

图二、BGA封装的横截面

图三、一个周期的热负载曲线为了证实该模型和对有限单元程序的实施,进行了试验。一个实际的BGA封装在SuperAGREE的温度老化室进行热循环,塑性应变场通过高灵敏度的Moiré干涉测量方法测量。使用有限单元程序,和已实施的构造模型,对相同的热循环试验进行了模拟和比较结果。图三显示该BGA封装经受的热负载曲线。使用SuperAGREE的温度老化室进行热循环。试验样品定期地取出,使用Moiré干涉测量系统测量无弹性应变的累积。该试验的详情在Zhaoetal中给出1,2。在试验与有限单元分析(FEA)模拟期间,封装固定在中间FR-4PCB层的两端。在有限单元模拟中,FR-4PCB和聚合层被认为是线性弹性的,焊接点随着损伤的进化被认为是非线性弹性-粘塑性的。

图四、在2与4个热循环之后的剪切应力分布

(使用了损伤模型)

图五、在6与8个热循环之后的剪切应力分布

(使用了损伤模型)

图六、在10个热循环之后的剪切应力分布

(使用了损伤模型)由于在FR-4PCB与聚合层之间的温度膨胀系数(CTE)的不匹配,焊接点内的热诱发的剪切应力是周期性的,造成焊接点的热机械疲劳。试验结果显示,剪切应力支配在焊点中懦变疲劳。图四至图六显示剪切应力的数字模拟。事实上,试验到失效可能要求1,000次以上的循环。可是,对于证实计算机模型的目的,模拟十个循环已经足够了。焊点的剪切应力的有限单元分析(FEA)结果与Moiré干涉测量的试验数据有很好的相关性。在试验期间,最高的应力总是在焊接点一上观察到。因此从FEA和Moiré干涉测量方法所得到的该焊点的无弹性应力积累在图七中绘出。应该指出的是,在我们的试验与分析中,观察到塑性应力的累积从一个循环到另一个循环不是线性的。随着焊锡的粗化,在每个循环中的塑性应力累积减少。在另一方面,使用C-M方法,假设塑性应力累积是线性的。因此,事实上,从实验室试验所获得的BGA封装的疲劳寿命通常是比基于Coffin-Manson的模型所预测的较长。

图七、有现单元模拟结果与Moiré干涉测量

试验结果比较

图九、在十个热循环之下最大损伤的进化

(使用了损伤模型)

图八、在十次热循环之后损伤的分布(使用了损伤模型)在焊点之中损伤的分布模拟如图八所示。损伤分布提供设计优化和可靠性的重要信息,因为它可用来预测封装在哪里何时失效。图九显示关键焊接点的损伤进化。损伤进化是在疲劳负载下材料退化的内在反映,而不只是间接的度量,如电气开路。使用损伤进化函数,可以作出精确的疲劳寿命预测,并且借助于计算机模拟可以对每个焊接点预测材料退化的进度。结论一个具有损伤偶合粘塑结构模型的计算工具已经提出,并通过一个用户定义的材料子程序实施在有限单元软件包中。使用计算机模拟,对新一代封装的可靠性评估成本大大地降低了。一个BGA电子元件的Pb37/Sn63焊接点在热循环负载下的热力学反映已经通过FEA来模拟,并与试验数据比较。FEA结果与Moiré干涉测量结果的比较显示较好的一致性。实施的目的是要提供对电子封装焊接点疲劳寿命预测的一个计算工具。这个工作可以帮助对在热力疲劳负载之下的电子封装共晶焊接连接逐步退化的数字模拟,而不需要高成本的试验。附录资料:不需要的可以自行删除电脑故障检测及维修方法软件调试的方法和建议1、操作系统方面。主要的调整内容是操作系统的启动文件、系统配置参数、组件文件、病毒等。修复操作系统启动文件。1)对于Windows9x系统,可用SYS命令来修复(要保证MSDOS.SYS的大小在1KB以上),但要求,在修复之前应保证分区参数是正确的。这可使用诸如DiskMap之类的软件实现;2)对于Windows2000/XP系统,有两种方法――修复启动文件,使用fixboot命令;修复主引导记录,使用fixmbr命令。调整操作系统配置文件。A.对于Windows9x系统,可用的工具很多,如:Msconfig命令、系统文件检查器、注册表备份和恢复命令(scanreg.exe,它要求在DOS环境下运行。另外如果要用scanreg.exe恢复注册表,最好使用所列出的恢复菜单中的第二个备份文件)等;B.对于Windows2000系统,可用的工具与Windows9x相比比较少,但某些调试命令可用Win98中的一些命令(如win98下的Msconfig命令,就可用在windows2000下);C.对于WindowsXP系统,可用的工具主要是Msconfig命令;D.调整电源管理和有关的服务,可以使用的命令是,在“运行”文本框中输入gpedit.msc来进行;E.所有操作系统的调试,都可通过控制面板、设备管理器、计算机管理器(Windows9x系统无)来进行系统的调试。软件调试的方法和建议组件文件(包括.DLL、.VXD等)的修复A.通过添加删除程序来重新安装;B.通过从.CAB文件中提取安装;C.可用系统文件检查器(sfc.exe命令)来修复有错误的文件;D.从好的机器上拷贝覆盖。检查系统中的病毒。建议使用命令行方式下的病毒查杀软件,并能直接访问诸如NTFS分区软件调试的方法和建议2、设备驱动安装与配置方面。主要调整设备驱动程序是否与设备匹配、版本是否合适、相应的设备在驱动程序的作用下能否正常响应。A.最好先由操作系统自动识别(特别要求的除外,如一些有特别要求的显示卡驱动、声卡驱动、非即插即用设备的驱动等),而后考虑强行安装。这样有利于判断设备的好坏;B.如果有操作系统自带的驱动,则先使用,仍不能正常或不能满足应用需要,则使用设备自带的驱动;C.更换设备,应先卸载驱动再更换。卸载驱动,可从设备管理器中卸载;再从安全模式下卸载;进而在INF目录中删除;最后通过注册表卸载;D.更新驱动时,如直接升级有问题,须先卸载再更新。软件调试的方法和建议3、磁盘状况方面。检查磁盘上的分区是否能访问、介质是否有损坏、保存在其上的文件是否完整等。可用的调整工具:A.DiskMap,方便地找回正确的分区;B.Fdisk及Fdisk/MDR,检查分区是否正确及使主引导记录恢复到原始状态;C.当硬盘容量大于64GB时,如果要重新分区或查看分区,要求使用随机附带的磁盘分区软盘中的Fdisk命令。这个命令可用windowsMe下的Fdisk命令来代替;D.Format、Scandisk、厂商提供的磁盘检测程序,检查磁盘介质是否有坏道;E.文件不完整时,要求对不完整的文件先进行改名,再用在“操作系统方面”中所述的方法重建。软件调试的方法和建议4、应用软件方面。如应用软件是否与操作系统或其它应用有兼容性的问题、使用与配置是否与说明手册中所述的相符、应用软件的相关程序、数据等是否完整等;5、BIOS设置方面。1)在必要时应先恢复到最优状态。建议:在维修时先把BIOS恢复到最优状态(一般是出厂时的状态),然后根据应用的需要,逐步设置到合适值。2)BIOS刷新不一定要刷新到最新版,有时应考虑降低版本。软件调试的方法和建议6、重建系统。在硬件配置正确,并得到用户许可时,可通过重建系统的方法来判断操作系统之类软件故障,在用户不同意的情况下,建议使用自带的硬盘,来进行重建系统的操作。在这种情况下,最好重建系统后,逐步复原到用户原硬盘的状态,以便判断故障点。1)重建系统,须以一键恢复为主,其次是恢复安装,最后是完全重新安装。恢复安装的方法:对于Windows9x系统,直接从光盘安装,或执行tools\sysrec\pcrestor.bat,即可实现恢复安装。在进行恢复安装时,可能由于的存在而影响安装过程的正常进行,这时,可在Windows目录下,删除后,再重新安装。另一种恢复安装,是将根目录下的System.1st改名为System.dat后覆盖掉Windows目录下的同名文件,之后重启即可。但这种方法,不是真正意义上的重新安装,而类似于完全重新安装。对于WindowsXP或Windows2000系统,直接使用其安装光盘启动,在安装界面中选择修复安装,选择R时会出现两个选项:一是快速修复,对于简单问题用此选择;另一是故障修复台,只要选择正确的安装目录就可启用故障修复台。故障修复台界面类似于DOS界面。2)为保证系统干净,在安装前,执行Fdisk/MBR命令(也可用C)。必要时,在此之后执行Format<驱动器盘符>/u[/s]命令。3)一定要使用随机版的或正版的操作系统安装介质进行安装。引发硬件故障的原因1.硬件本身质量不佳。粗糙的生产工艺、劣质的制作材料、非标准的规格尺寸等都是引发故障的隐藏因素。由此常常引发板卡上元件焊点的虚焊脱焊、插接件之间接触不良、连接导线短路断路等故障。2.人为因素影响。操作人员的使用习惯和应用水平也不容小觑,例如带电插拔设备、设备之间错误的插接方式、不正确的BIOS参数设置等均可导致硬件故障。3.使用环境影响。这里的环境可以包括温度、湿度、灰尘、电磁干扰、供电质量等方面。每一方面的影响都是严重的,例如过高的环境温度无疑会严重影响设备的性能等等。4.其他影响。由于设备的正常磨损和硬件老化也常常引发硬件故障。检修硬件故障的原则1.先软件后硬件电脑发生故障后,一定要在排除软件方面的原因(例如系统注册表损坏、BIOS参数设置不当、硬盘主引导扇区损坏等)后再考虑硬件原因,否则很容易走弯路。2.先外设后主机由于外设原因引发的故障往往比较容易发现和排除,可以先根据系统报错信息检查键盘、鼠标、显示器、打印机等外部设备的各种连线和本身工作状况。在排除外设方面的原因后,再来考虑主机。3.先电源后部件作为电脑主机的动力源泉,电源的作用很关键。电源功率不足、输出电压电流不正常等都会导致各种故障的发生。因此,应该在首先排除电源的问题后再考虑其他部件。4.先简单后复杂目前的电脑硬件产品并不像我们想象的那么脆弱、那么容易损坏。因此在遇到硬件故障时,应该从最简单的原因开始检查。如各种线缆的连接情况是否正常、各种插卡是否存在接触不良的情况等。在进行检修硬件故障的步骤1.软件排障还原BIOS参数至缺省设置(开机后按[Del]键进入BIOS设置窗口→选中“LoadOptimizedDefaults”项→回车后按[Y]键确认→保存设置退出);恢复注册表(开机后按[F8]键→在启动菜单中选择“Commandpromptonly”方式启动至纯DOS模式下→键入“scanreg/restore”命令→选择一个机器正常使用时的注册表备份文件进行恢复);排除硬件资源冲突(右击[我的电脑]→[属性]→在[设备管理器]标签下找到并双击标有黄色感叹号的设备名称→在[资源]标签下取消“使用自动的设置”选项并单击[更改设置]按钮→找到并分配一段不存在冲突的资源)。检修硬件故障的步骤2.用诊断软件测试使用专门检查、诊断硬件故障的工具软件来帮助查找故障的原因,如NortonTools(诺顿工具箱)等。诊断软件不但能够检查整机系统内部各个部件(如CPU、内存、主板,硬盘等)的运行状况,还能检查整个系统的稳定性和系统工作能力。如果发现问题会给出详尽的报告信息,便于我们寻找故障原因和排除故障。3.直接观察即通过看、听、摸、嗅等方式检查比较明显的故障。例如根据BIOS报警声或Debug卡判断故障发生的部位;观察电源内是否有火花、异常声音;检查各种插头是否松动、线缆是否破损、断线或碰线;电路板上的元件是否发烫、烧焦、断裂、脱焊虚焊;各种风扇是否运转正常等。有的故障现象时隐时现,可用橡皮榔头轻敲有关元件,观察故障现象的变化情况,以确定故障位置。检修硬件故障的步骤4.插拔替换初步确定发生故障的位置后,可将被怀疑的部件或线缆重新插拔,以排除松动或接触不良的原因。例如将板卡拆下后用橡皮擦擦拭金手指,然后重新插好;将各种线缆重新插拔等。如果经过插拔后不能排除故障,可使用相同功能型号的板卡替换有故障的板卡,以确定板卡本身已经损坏或是主板的插槽存在问题。然后根据情况更换板卡。5.系统最小化最严重的故障是机器开机后无任何显示和报警信息,应用上述方法已无法判断故障产生的原因。这时我们可以采取最小系统法进行诊断,即只安装CPU、内存、显卡、主板。如果不能正常工作,则在这四个关键部件中采用替换法查找存在故障的部件。如果能正常工作,再接硬盘……以此类推,直到找出引发故障的罪魁祸首。硬件检修方法1、观察法观察,是维修判断过程中第一要法,它贯穿于整个维修过程中。观察不仅要认真,而且要全面。要观察的内容包括:a、周围的环境;b、硬件环境。包括接插头、座和槽等;c、软件环境;d、用户操作的习惯、过程硬件检修方法2、最小系统法最小系统是指,从维修判断的角度能使电脑开机或运行的最基本的硬件和软件环境。最小系统有两种形式:硬件最小系统:由电源、主板和CPU组成。在这个系统中,没有任何信号线的连接,只有电源到主板的电源连接。在判断过程中是通过声音来判断这一核心组成部分是否可正常工作;软件最小系统:由电源、主板、CPU、内存、显示卡/显示器、键盘和硬盘组成。这个最小系统主要用来判断系统是否可完成正常的启动与运行。硬件检修方法对于软件最小环境,就“软件”有以下几点要说明:a、硬盘中的软件环境,保留着原先的软件环境,只是在分析判断时,根据需要进行隔离如卸载、屏蔽等)。保留原有的软件环境,主要是用来分析判断应用软件方面的问题b、硬盘中的软件环境,只有一个基本的操作系统环境(可能是卸载掉所有应用,或是重新安装一个干净的操作系统),然后根据分析判断的需要,加载需要的应用。需要使用一个干净的操作系统环境,是要判断系统问题、软件冲突或软、硬件间的冲突问题。c、在软件最小系统下,可根据需要添加或更改适当的硬件。如:在判断启动故障时,由于硬盘不能启动,想检查一下能否从其它驱动器启动。这时,可在软件最小系统下加入一个软驱或干脆用软驱替换硬盘来检查。又如:在判断音视频方面的故障时,应需要在软件最小系统中加入声卡;在判断网络问题时,就应在软件最小系统中加入网卡等。最小系统法,主要是要先判断在最基本的软、硬件环境中,系统是否可正常工作。如果不能正常工作,即可判定最基本的软、硬件部件有故障,从而起到故障隔离的作用。硬件检修方法3、逐步添加/去除法逐步添加法,以最小系统为基础,每次只向系统添加一个部件/设备或软件,来检查故障现象是否消失或发生变化,以此来判断并定位故障部位。逐步去除法,正好与逐步添加法的操作相反。逐步添加/去除法一般要与替换法配合,才能较为准确地定位故障部位。4、隔离法是将可能防碍故障判断的硬件或软件屏蔽起来的一种判断方法。它也可用来将怀疑相互冲突的硬件、软件隔离开以判断故障是否发生变化的一种方法。软硬件屏蔽,对于软件来说,即是停止其运行,或者是卸载;对于硬件来说,是在设备管理器中,禁用、卸载其驱动,或干脆将硬件从系统中去除。硬件检修方法5、替换法替换法是用好的部件去代替可能有故障的部件,以判断故障现象是否消失的一种维修方法。好的部件可以是同型号的,也可能是不同型号的。替换的顺序一般为:a、根据故障的现象或故障类别,来考虑需要进行替换的部件或设备;b、按先简单后复杂的顺序进行替换。如:先内存、CPU,后主板,又如要判断打印故障时,可先考虑打印驱动是否有问题,再考虑打印电缆是否有故障,最后考虑打印机或并口是否有故障等;c、最先考查与怀疑有故障的部件相连接的连接线、信号线等,之后是替换怀疑有故障的部件,再后是替换供电部件,最后是与之相关的其它部件。d、从部件的故障率高低来考虑最先替换的部件。故障率高的部件先进行替换。硬件检修方法6、比较法比较法与替换法类似,即用好的部件与怀疑有故障的部件进行外观、配置、运行现象等方面的比较,也可在两台电脑间进行比较,以判断故障电脑在环境设置,硬件配置方面的不同,从而找出故障部位。7、升降温法可在用户同意的情况下,设法降低电脑的通风能力,靠电脑自身的发热来升温;降温的方法有:1)一般选择环境温度较低的时段,如一清早或较晚的时间;2)使电脑停机12~24小时以上等方法实现;3)用电风扇对着故障机吹,以加快降温速度。8、敲打法敲打法一般用在怀疑电脑中的某部件有接触不良的故障时,通过振动、适当的扭曲,甚或用橡胶锤敲打部件或设备的特定部件来使故障复现,从而判断故障部件的一种维修方法。硬件检修方法9、对电脑产品进行清洁有些电脑故障,往往是由于机器内灰尘较多引起的,这就要求我们在维修过程中,注意观察故障机内、外部是否有较多的灰尘,如果是,应该先进行除尘,再进行后续的判断维修。在进行除尘操作中,以下几个方面要特别注意:a、注意风道的清洁b、注意风扇的清洁风扇的清洁过程中,最好在清除其灰尘后,能在风扇轴处,点一点儿钟表油,加强润滑。c、注意接插头、座、槽、板卡金手指部分的清洁金手指的清洁,可以用橡皮擦拭金手指部分,或用酒精棉擦拭也可以。插头、座、槽的金属引脚上的氧化现象的去除:一是用酒精擦拭,一是用金属片(如小一字改锥)在金属引脚上轻轻刮擦。d、注意大规模集成电路、元器件等引脚处的清洁清洁时,应用小毛刷或吸尘器等除掉灰尘,同时要观察引脚有无虚焊和潮湿的现象,元器件是否有变形、变色或漏液现象。e、注意使用的清洁工具清洁用的工具,首先是防静电的。如清洁用的小毛刷,应使用天然材料制成的毛刷,禁用塑料毛刷。其次是如使用金属工具进行清洁时,必须切断电源,且对金属工具进行泄放静电的处理。用于清洁的工具包括:小毛刷、皮老虎、吸尘器、抹布、酒精(不可用来擦拭机箱、显示器等的塑料外壳)。f、对于比较潮湿的情况,应想办法使其干燥后再使用。可用的工具如电风扇、电吹风等,也可让其自然风干。系统报警提示含义1短系统启动正常

1短1短1短系统加电自检初始化失败

1短1短2短主板错误

1短1短3短CMOS或电池失败

1短1短4短ROM

BIOS校验和错误

1短2短1短系统时钟错误

1短2短2短DMA初始化失败

1短2短3短DMA页寄存器错误

1短3短1短RAM刷新错误

1短3短2短基本内存错误

1短3短3短基本内存错误

1短4短1短基本内存地址线错误

1短4短2短基本内存校验错误

BIOS故障案例1、BIOS设置错误,引起内存自检时出错(校验错误)

平常我们买到的内存一般都不带校验,校验内存会比不带校验的内存贵30%到50%,有的原装ECC校验内存更贵得惊人。但是有的用户在BIOS里却把校验一项设为Enable,在内存自检时,会检测不过去,提示内存检测错误,有的人会以为内存校验错就是内存有缺陷,其实报告内存校验错只是因为您的内存没有这项功能而已,解决的方法是在BIOS里将该项设置改为Disable就可以了。

2、主板电池没电

如果电脑每次开机时都不能正确找到硬盘,或者开机后系统时间不正确,而重新设置后可以正常使用,那么说明是主板电池故障,最大可能是寿命已到或已经损坏,需要更换电池。

3、清除BIOS的口令

为了保护计算机的资源和安全,可以为其加上开机密码。但是一旦不小心将密码忘记,就会致使计算机不能进入BIOS设置,或者不能启动计算机。

(1)可先试一下通用口令,如AMI

BIOS

的通用口令是“AMI”,AWORD

BIOS

的通用口令比较多,可能有“AWORD”,“H996”,“Syzx”,“WANTGIRL”,“AwordSW”等等,输入时请注意大小写,不过很多新的主板都不支持通用口令,或者是有通用口令但大家还没有发现,所以通用口令不是万能的。

(2)

如果您的计算机能启动,但不能进入BIOS设置,可以用以下方法,但要注意,如果您看不懂下面的操作,就不要尝试,老老实实用(3)中的方法吧:电脑的BIOS设置可以通过70H和71H两个端口进行访问和更改,最简单的方法就是将其全部清除,即变成缺省设置。但是有个条件就是计算机在己经启动的前提下,才能进行以下的操作。

如下程序段可以完成对所有电脑CMOS的清除工作:

C:\>debug

-o

70

20

-o

71

20

-r

-q

(3)这种方法是一定成功的,缺点就是必须打开机箱。打开机箱后,在主板上找到清除CMOS内容的跳线(参考主板的说明书),将其短接三五秒后再开机,CMOS内容会清除为出厂时的设置,注意不要将短路用的跳线一直插在上面,这样您会无法设置BIOS的。

4、升级BIOS引起的故障以及对主板老的BIOS进行升级注意事项

计算机故障案例故障现象一:显示器黑屏

故障排除:

1、先确定是否是显卡有问题。判断的方法是听PC喇叭的叫声,一长两短声肯定是显卡发生了致命错误,只能更换。

2、如果无法断定显卡的好坏,可以换一块试试,还不行的话则有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论