




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.2.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知函数若恒成立,则实数的取值范围是()A. B. C. D.4.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A. B. C. D.5.已知向量,,且,则()A. B. C.1 D.26.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.7.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.8.设全集,集合,,则()A. B. C. D.9.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或10.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.11.设等比数列的前项和为,则“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要12.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q二、填空题:本题共4小题,每小题5分,共20分。13.某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________.14.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种.(用数字作答)15.如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为______.16.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数f(x)=x2−4xsinx−4cosx.(1)讨论函数f(x)在[−π,π]上的单调性;(2)证明:函数f(x)在R上有且仅有两个零点.18.(12分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)若数列的前项和,,求证:数列的前项和.19.(12分)某早餐店对一款新口味的酸奶进行了一段时间试销,定价为元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照,,,分组,得到如下频率分布直方图,以不同销量的频率估计概率.从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率;试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶).①设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求和的分布列和数学期望;②以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱?注:销售额=销量×定价;利润=销售额-批发成本.20.(12分)随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.22.(10分)已知函数.(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.2、A【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.3、D【解析】
由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.4、B【解析】
根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.5、A【解析】
根据向量垂直的坐标表示列方程,解方程求得的值.【详解】由于向量,,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.6、B【解析】
选B.考点:圆心坐标7、D【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.8、D【解析】
求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于故集合或故集合故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.9、D【解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.【点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.10、D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.11、A【解析】
首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.12、C【解析】
解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为,如图所示,平面,所以底面积为,几何体的高为,所以其体积为.点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.14、1.【解析】试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1.考点:排列、组合及简单计数问题.点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详.15、1【解析】
由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积.【详解】如图,作,交于,,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:.故答案为:1.【点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量.16、【解析】
根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,,和的中点坐标为,且在线段的垂直平分线上,,即,同理可得:,,,点的轨迹方程为.故答案为:.【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】
(1)f(x)=2x−4xcosx−4sinx+4sinx=,由f(x)=1,x∈[−π,π]得x=1或或.当x变化时,f(x)和f(x)的变化情况如下表:x1f(x)−1+1−1+f(x)单调递减极小值单调递增极大值单调递减极小值单调递增所以f(x)在区间,上单调递减,在区间,上单调递增.(2)由(1)得极大值为f(1)=−4;极小值为f()=f()<f(1)<1.又f(π)=f(−π)=π2+4>1,所以f(x)在,上各有一个零点.显然x∈(π,2π)时,−4xsinx>1,x2−4cosx>1,所以f(x)>1;x∈[2π,+∞)时,f(x)≥x2−4x−4>62−4×6−4=8>1,所以f(x)在(π,+∞)上没有零点.因为f(−x)=(−x)2−4(−x)sin(−x)−4cos(−x)=x2−4xsinx−4cosx=f(x),所以f(x)为偶函数,从而x<−π时,f(x)>1,即f(x)在(−∞,−π)上也没有零点.故f(x)仅在,上各有一个零点,即f(x)在R上有且仅有两个零点.18、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:(Ⅰ)因为,所以,,切点为.由,所以,所以曲线在处的切线方程为,即(Ⅱ)由,令,则(当且仅当取等号).故在上为增函数.①当时,,故在上为增函数,所以恒成立,故符合题意;②当时,由于,,根据零点存在定理,必存在,使得,由于在上为增函数,故当时,,故在上为减函数,所以当时,,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为(III)证明:由由(Ⅱ)知当时,,故当时,,故,故.下面证明:因为而,所以,,即:点睛:本题考查了利用导数的几何意义求出参数及证明不等式成立,借助第二问的证明过程,利用导数的单调性证明数列的不等式,在求解的过程中还要求出数列的和,计算较为复杂,本题属于难题.19、;①详见解析;②应该批发一大箱.【解析】
酸奶每天销量大于瓶的概率为,不大于瓶的概率为,设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.利用对立事件概率公式求解即可.①若早餐店批发一大箱,批发成本为元,依题意,销量有,,,四种情况,分别求出相应概率,列出分布列,求出的数学期望,若早餐店批发一小箱,批发成本为元,依题意,销量有,两种情况,分别求出相应概率,由此求出的分布列和数学期望;②根据①中的计算结果,,从而早餐应该批发一大箱.【详解】解:根据图中数据,酸奶每天销量大于瓶的概率为,不大于瓶的概率为.设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.所以.①若早餐店批发一大箱,批发成本为元,依题意,销量有,,,四种情况.当销量为瓶时,利润为元;当销量为瓶时,利润为元;当销量为瓶时,利润为元;当销量为瓶时,利润为元.随机变量的分布列为所以(元)若早餐店批发一小箱,批发成本为元,依题意,销量有,两种情况.当销量为瓶时,利润为元;当销量为瓶时,利润为元.随机变量的分布列为所以(元).②根据①中的计算结果,,所以早餐店应该批发一大箱.【点睛】本题考查概率,离散型随机变量的分布列、数学期望的求法,考查古典概型、对立事件概率计算公式等基础知识,属于中档题.20、(Ⅰ)详见解析;(Ⅱ)①;②数学期望为6,方差为2.4.【解析】
(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率.②由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差.【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,∴能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,∴选取的3人中至少有2人经常网
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业间租赁合同的效力认定及责任承担
- 2025标准运输合同范本
- 2025桃子买卖合同范本
- 2025《设备采购合同模板》
- 2025技术开发委托合同
- 2025计算机软件购销合同范本
- 2025财产信托合同样本
- 2025年太阳能组件生产装备项目建议书
- 2025年专用改性型氯化聚乙烯合作协议书
- 2025年稀有金属及稀土金属材料合作协议书
- CAD输入文字时提示“找不到主词典无法启动拼写检查程序”怎么办
- -活出心花怒放的生命 课件 心理健康
- 给水泵检修方案
- 设备出入库管理办法
- KEGG代谢通路中文翻译
- 消火栓月检查表
- GB∕T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法)
- 低成本自动化的开展与案例77页PPT课件
- 人防工程竣工资料(全套)
- 梅州市部分饮用水源保护区调整方案
- “重庆环保”标志说明
评论
0/150
提交评论