![浙江省温州九校2023学年高三(最后冲刺)数学试卷(含解析)_第1页](http://file4.renrendoc.com/view/7e77605238e6d4e5e7744fb4ec19f0ae/7e77605238e6d4e5e7744fb4ec19f0ae1.gif)
![浙江省温州九校2023学年高三(最后冲刺)数学试卷(含解析)_第2页](http://file4.renrendoc.com/view/7e77605238e6d4e5e7744fb4ec19f0ae/7e77605238e6d4e5e7744fb4ec19f0ae2.gif)
![浙江省温州九校2023学年高三(最后冲刺)数学试卷(含解析)_第3页](http://file4.renrendoc.com/view/7e77605238e6d4e5e7744fb4ec19f0ae/7e77605238e6d4e5e7744fb4ec19f0ae3.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.2.已知双曲线的一条渐近线方程为,则双曲线的离心率为()A. B. C. D.3.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A. B. C. D.4.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象5.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141432341342234142243331112322342241244431233214344142134412由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.6.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像7.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根8.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()A.40 B.60 C.80 D.1009.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A. B. C. D.10.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30 B. C. D.6211.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为()A. B. C. D.12.如图,是圆的一条直径,为半圆弧的两个三等分点,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足约束条件则的最大值为________.14.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.15.已知全集,,则________.16.若函数为偶函数,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,且.(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由.18.(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.(1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.19.(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.20.(12分)在中,角的对边分别为.已知,且.(1)求的值;(2)若的面积是,求的周长.21.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.22.(10分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【题目详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【答案点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.2、B【答案解析】
由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【题目详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【答案点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.3、D【答案解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【题目详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,.,,,为的中点,,,,,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【答案点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.4、D【答案解析】
利用辅助角公式化简函数得到,再逐项判断正误得到答案.【题目详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【答案点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.5、A【答案解析】
由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.【题目详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为.故选:A.【答案点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.6、B【答案解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.【题目详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【答案点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.7、C【答案解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【题目详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【答案点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.8、D【答案解析】
由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【题目详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【答案点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.9、B【答案解析】
基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【题目详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【答案点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.10、B【答案解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【题目详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【答案点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.11、C【答案解析】
根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【题目详解】由已知,,成等差数列,设,,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,,∴离心率.故选:C【答案点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.12、B【答案解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;【题目详解】解:连接、,,是半圆弧的两个三等分点,,且,所以四边形为棱形,.故选:B【答案点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】
作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【题目详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1.故答案为:1【答案点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.14、【答案解析】
直接计算,可得结果.【题目详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【答案点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.15、【答案解析】
利用集合的补集运算即可求解.【题目详解】由全集,,所以.故答案为:【答案点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.16、1【答案解析】试题分析:由函数为偶函数函数为奇函数,.考点:函数的奇偶性.【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为函数为奇函数,然后再利用特殊与一般思想,取.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析(3)【答案解析】
试题分析:(1)当时,,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,,所以试题解析:(1)当时,,由得减区间;(2)法1:,,,所以,方程有两个不相等的实数根;法2:,,是开口向上的二次函数,所以,方程有两个不相等的实数根;(3)因为,,又在和增,在减,所以.考点:利用导数求函数减区间,二次函数与二次方程关系18、(1),中位数为;(2)新能源汽车平均每个季度的销售量为万台,以此预计年的销售量约为万台.【答案解析】
(1)根据频率分布直方图中所有矩形面积之和为可计算出的值,利用中位数左边的矩形面积之和为可求得销量的中位数的值;(2)利用每个矩形底边的中点值乘以相应矩形的面积,相加可得出销量的平均数,由此可预计年的销售量.【题目详解】(1)由于频率分布直方图的所有矩形面积之和为,则,解得,由于,因此,销量的中位数为;(2)由频率分布直方图可知,新能源汽车平均每个季度的销售量为(万台),由此预测年的销售量为万台.【答案点睛】本题考查利用频率分布直方图求参数、中位数以及平均数的计算,考查计算能力,属于基础题.19、(1);(2)证明见解析.【答案解析】
(1)求出,判断函数的单调性,求出函数的最大值,即求的范围;(2)由(1)可知,.对分和两种情况讨论,构造函数,利用放缩法和基本不等式证明结论.【题目详解】(1)由,得.令.当时,;当时,;在上单调递增,在上单调递减,.对任意恒成立,.(2)证明:由(1)可知,在上单调递增,在上单调递减,.若,则,令在上单调递增,,.又,在上单调递减,.若,则显然成立.综上,.又以上两式左右两端分别相加,得,即,所以.【答案点睛】本题考查利用导数解决不等式恒成立问题,利用导数证明不等式,属于难题.20、(1);(2)【答案解析】
(1)由正弦定理可得,,化简并结合,可求得三者间的关系,代入余弦定理可求得;(2)由(1)可求得,再结合三角形的面积公式,可求出,从而可求出答案.【题目详解】(1)因为,所以,整理得:.因为,所以,所以.由余弦定理可得.(2)由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球核电用钢管行业调研及趋势分析报告
- 2025年全球及中国钢制垂直推拉门行业头部企业市场占有率及排名调研报告
- 2025-2030全球微孔织物行业调研及趋势分析报告
- 2025-2030全球半导体电镀前处理剂行业调研及趋势分析报告
- 2025-2030全球热水箱行业调研及趋势分析报告
- 2025年全球及中国手机支付安全行业头部企业市场占有率及排名调研报告
- 2025年全球及中国超高压HPP灭菌设备行业头部企业市场占有率及排名调研报告
- 液氨运输合同模板
- 2025员工入股合同(美容美发)
- 外墙保温劳务分包合同
- Unit6AtthesnackbarStorytimeDiningwithdragons(课件)译林版英语四年级上册
- 2023年四川省公务员录用考试《行测》真题卷及答案解析
- 机电一体化系统设计-第5章-特性分析
- 2025年高考物理复习压轴题:电磁感应综合问题(原卷版)
- 雨棚钢结构施工组织设计正式版
- 2024尼尔森IQ中国本土快消企业调研报告
- 2024年印度辣椒行业状况及未来发展趋势报告
- 骨科医院感染控制操作流程
- 铸铝焊接工艺
- 2023年广东省深圳市八年级下学期物理期中考试试卷
- 《诗词写作常识 诗词中国普及读物 》读书笔记思维导图
评论
0/150
提交评论