版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.2.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.243.如图,抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①;②;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为A.1个 B.2个 C.3个 D.4个4.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在A的下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为A.3 B. C.4 D.5.二次函数y=-2(x+1)2+3的图象的顶点坐标是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)6.如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定7.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.38.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为()A.2:1 B.1:2 C.4:1 D.1:49.半径为的圆中,的圆心角所对的弧的长度为()A. B. C. D.10.已知二次函数y=ax2+bx+c的图象如图所示,下列结i论:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正确的结论有()A.1个 B.2个 C.3个 D.4个11.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A.120m B.67.5m C.40m D.30m12.一次函数y=bx+a与二次函数y=ax2+bx+c(a0)在同一坐标系中的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.若,且一元二次方程有实数根,则的取值范围是.14.已知MAX(a,b)=a,其中a>b如果MAX(,0)=0,那么x的取值范围为__________15.计算:2cos30°+tan45°﹣4sin260°=_____.16.已知函数的图象如图所示,若直线与该图象恰有两个不同的交点,则的取值范围为_____.17.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.18.如图,AB为⊙O的直径,C、D为⊙O上的点,弧AD=弧CD.若∠CAB=40°,则∠CAD=_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0, 3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP20.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)请补全条形统计图(图2);(2)在扇形统计图中,“篮球”部分所对应的圆心角是____________度?(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.21.(8分)矩形ABCD中,AB=2,AD=3,O为边AD上一点,以O为圆心,OA为半径r作⊙O,过点B作⊙O的切线BF,F为切点.(1)如图1,当⊙O经过点C时,求⊙O截边BC所得弦MC的长度;(2)如图2,切线BF与边AD相交于点E,当FE=FO时,求r的值;(3)如图3,当⊙O与边CD相切时,切线BF与边CD相交于点H,设△BCH、四边形HFOD、四边形FOAB的面积分别为S1、S2、S3,求的值.22.(10分)如图1,在矩形ABCD中AB=4,BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH,DG分别交AE、CF于点M、Q,BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积。23.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.24.(10分)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.25.(12分)对于平面直角坐标系中,已知点A(-2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.图1备用图(1)①如图1,在点P1(3,6),P2(-2,-5),P3(2,2)中,线段AB的可视点是;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:__________.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=-x+m上存在线段AB的正可视点,直接写出m的取值范围.26.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2考点:切线的性质;最值问题.2、B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:;故选:B.【点睛】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.3、D【解析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4、B【分析】首先分析得到当点E旋转至y轴正方向上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长.【详解】如图,当点E旋转至y轴正方向上时DE最小.∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC.∵AB=BC=2,∴AD=AB•sin∠B=.∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,1),∴OA=1.∴.故选B.5、B【解析】分析:据二次函数的顶点式,可直接得出其顶点坐标;解:∵二次函数的解析式为:y=-(x-1)2+3,∴其图象的顶点坐标是:(1,3);故选A.6、B【分析】根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ=,于是得到S2=()2>()2,即可得到结论.【详解】解:如图1,设正方形DEFG的边长是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,过B作BM⊥AC于M,交DE于N,由三角形面积公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的边长是;∴S1=()2,如图2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故选:B.【点睛】本题考查了相似三角形的性质和判定,三角形面积公式,正方形的性质的应用,熟练掌握相似三角形的判定和性质是解题的关键.7、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】①掷一枚硬币正面朝上是随机事件;②五边形的内角和是540°是必然事件;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.9、D【分析】根据弧长公式l=,计算即可.【详解】弧长=,
故选:D.【点睛】本题考查弧长公式,解题的关键是记住弧长公式,属于中考常考题型.10、C【分析】首先根据开口方向确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b2﹣4ac的取值范围,根据x=﹣1函数值可以判断.【详解】解:抛物线开口向下,,对称轴,,抛物线与轴的交点在轴的上方,,,故①错误;抛物线与轴有两个交点,,故②正确;对称轴,,,故③正确;根据图象可知,当时,,故④正确;故选:.【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.11、A【解析】∵∠ABE=∠DCE,∠AEB=∠CED,∴△ABE∽△DCE,∴.∵BE=90m,EC=45m,CD=60m,∴故选A.12、C【解析】A.由抛物线可知,a>0,x=−<0,得b<0,由直线可知,a>0,b>0,故本选项错误;B.由抛物线可知,a>0,x=−>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选C.二、填空题(每题4分,共24分)13、且.【解析】试题分析:∵,.∴一元二次方程为.∵一元二次方程有实数根,∴且.考点:(1)非负数的性质;(2)一元二次方程根的判别式.14、0﹤x﹤1【分析】由题意根据定义得出x2-x<0,通过作出函数y=x2-x的图象,根据图象即可求得x的取值范围.【详解】解:由题意可知x2-x<0,画出函数y=x2-x的图象如图:由图象可知x2-x<0的取值范围为0<x<1.故答案为:0<x<1.【点睛】本题主要考查二次函数的性质,解题的关键是理解新定义并根据新定义列出关于x的不等式运用数形结合思维分析.15、1【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【详解】解:2cos30°+tan45°﹣4sin260°=2×+1﹣4×=3+1﹣4×=4﹣3=1故答案为:1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16、【解析】直线与有一个交点,与有两个交点,则有,时,,即可求解.【详解】解:直线与该图象恰有三个不同的交点,则直线与有一个交点,∴,∵与有两个交点,∴,,∴,∴;故答案为.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定的范围.17、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.18、25°【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】解:如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵弧AD=弧CD∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为:25°.【点睛】本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.三、解答题(共78分)19、DP=23,点D的坐标为【分析】根据等边三角形的每一个角都是60°可得∠OAB=60°,然后根据对应边的夹角∠OAB为旋转角求出∠PAD=60°,再判断出△APD是等边三角形,根据等边三角形的三条边都相等可得DP=AP,根据,∠OAB的平分线交x轴于点P,∠OAP=30°,利用三角函数求出AP,从而得到DP,再求出∠OAD=90°,然后写出点D的坐标即可.【详解】∵△AOB是等边三角形,∴∠OAB=60∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠PAD=60∘,∴△APD是等边三角形,∴DP=AP,∠PAD=60∵A的坐标是(0, 3),∠OAB的平分线交x轴于点P,∴∠OAP=30∘,∴DP=AP=23∵∠OAP=30∘,∴∠OAD=30∴点D的坐标为(23【点睛】本题考查了坐标与图形的变化,解题的关键是熟练的掌握坐标与图形的变化的相关知识点.20、(1)见解析;(2)144;(3)【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;
(2)用360°乘以喜欢篮球人数所占的百分比即可;
(3)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【详解】(1)调查的总人数为8÷16%=50(人),
喜欢乒乓球的人数为50-8-20-6-2=14(人),补全条形统计图如下:
(2)“篮球”部分所对应的圆心角=360×40%=144°;
(3)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,
所以抽取的两人恰好是甲和乙的概率:.【点睛】本题考查了条形统计图和扇形统计图的综合运用以及列表法与树状图法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21、(1)CM=;(2)r=2﹣2;(3)1.【分析】(1)如图1中,连接OM,OC,作OH⊥BC于H.首先证明CM=2OD,设AO=CO=r,在Rt△CDO中,根据OC2=CD2+OD2,构建方程求出r即可解决问题.(2)证明△OEF,△ABE都是等腰直角三角形,设OA=OF=EF=r,则OE=r,根据AE=2,构建方程即可解决问题.(3)分别求出S1、S2、S3的值即可解决问题.【详解】解:(1)如图1中,连接OM,OC,作OH⊥BC于H.∵OH⊥CM,∴MH=CH,∠OHC=90°,∵四边形ABCD是矩形,∴∠D=∠HCD=90°,∴四边形CDOH是矩形,∴CH=OD,CM=2OD,设AO=CO=r,在Rt△CDO中,∵OC2=CD2+OD2,∴r2=22+(3﹣r)2,∴r=,∴OD=3﹣r=,∴CM=2OD=.(2)如图2中,∵BE是⊙O的切线,∴OF⊥BE,∵EF=FO,∴∠FEO=45°,∵∠BAE=90°,∴∠ABE=∠AEB=45°,∴AB=BE=2,设OA=OF=EF=r,则OE=r,∴r+r=2,∴r=2﹣2.(3)如图3中,由题意:直线AB,直线BH,直线CD都是⊙O的切线,∴BA=BF=2,FH=HD,设FH=HD=x,在Rt△BCH中,∵BH2=BC2+CH2,∴(2+x)2=32+(2﹣x)2,∴x=,∴CH=,∴S1=S2=,S3==3,∴.【点睛】本题属于圆综合题,考查了切线的判定和性质,勾股定理,垂径定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.22、(1)见解析;(2)菱形AECF的边长为5;(3)距离为,面积为【分析】(1)根据矩形的性质可得AD∥BC,AD=BC,又BE=DF,所以AF∥EC,AF=EC,从而可得四边形AECF为平行四边形;(2)设菱形AECF的边长为x,依据菱形的性质可得AE=EC=x,BE=8-x,在Rt△ABE中运用勾股定理可求解;(3)先由中位线的性质得出CH=2,OH=1.5,再证明△PQH∽△PCB,根据相似三角形的性质得出h的w的值,再求出四边形MNPQ的面积即可.【详解】(1)证明:∵四边形ABCD为矩形,BE=DF,∴AD∥BC,AD=BC,∴AF∥EC,AF=EC,∴四边形AECF为平行四边形.(2)解:设菱形AECF的边长为x,∵四边形AECF为菱形,AB=4,BC=8,∴AE=EC=x,BE=8-x,在Rt△ABE中,AE2=AB2+BE2即x2=42+(8-x)2,解得x=5,∴菱形AECF的边长为5.(3)连接GH交FC于点O,设点P到BC的距离为h,∵G、H分别为AB、CD的中点,∴OH是△CDF的中位线,CH=2,∴△POH∽△PCB,∵DF=8-5=3,∴QH=1.5,∴,解得h=,由P到BC的距离可得N到BC的距离为,四边形NECP的面积为,菱形面积为5×4=20;∴四边形MNPQ面积为=菱形AECF的面积-四边形NECP的面积×2=20-×2=【点睛】此题考查了矩形的性质、菱形的判定与性质以及勾股定理.注意掌握对应关系是解此题的关键.23、(1)60°;(2)证明略;(3)【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为==.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.24、(1)60,10;(2)96°;(3)1020;(4)【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有(人),,故答案为60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数,故答案为96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:(人),故答案为1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12
种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为.【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学术出版行业市场调研分析报告
- 大数据分析及应用项目教程(Spark SQL)(微课版) 教案全套 许慧 单元1-6 大数据分析概述-Zepplin数据可视化
- 药用薄荷市场分析及投资价值研究报告
- 自推进式扫路机细分市场深度研究报告
- 冷链果蔬物流行业市场调研分析报告
- 移动电话用屏幕保护膜市场发展前景分析及供需格局研究预测报告
- 电子货币收款机细分市场深度研究报告
- 电子闪光器开关市场分析及投资价值研究报告
- 衬衫袖扣市场分析及投资价值研究报告
- 绘画便笺簿项目营销计划书
- 小学英语课堂教学策略与方法探讨
- 5科学大玉米真好吃课件
- 新苏教版2021-2022四年级科学上册《8力与运动》教案
- DB44 T 552-2008 林业生态 术语
- 套装门安装工程施工方案(完整版)
- IBHRE国际心律失常考官委员会资料: ibhre 复习资料
- 洋葱杂交制种高产栽培技术
- 坚定信心 努力拼搏——在公司大检修动员会上的讲话
- 油墨喷码机购销合同
- 水泵生产作业指导书
- 《高血压的防治》PPT课件.ppt
评论
0/150
提交评论