版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则方程的实数根的个数是()A. B. C. D.2.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.3.已知直线,,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.观察下列各式:,,,,,,,,根据以上规律,则()A. B. C. D.5.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.6.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要7.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.8.已知,,,则的大小关系为()A. B. C. D.9.函数在的图象大致为()A. B.C. D.10.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.11.设集合,则()A. B. C. D.12.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数据的标准差为_____.14.已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为________元.15.(5分)已知,且,则的值是____________.16.直线是曲线的一条切线为自然对数的底数),则实数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.18.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.19.(12分)如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.20.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.21.(12分)已知函数,.(1)当时,求函数的值域;(2),,求实数的取值范围.22.(10分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
画出函数,将方程看作交点个数,运用图象判断根的个数.【题目详解】画出函数令有两解,则分别有3个,2个解,故方程的实数根的个数是3+2=5个故选:D【答案点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.2、C【答案解析】
列出循环的每一步,可得出输出的的值.【题目详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【答案点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.3、C【答案解析】
先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【题目详解】直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【答案点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.4、B【答案解析】
每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算.【题目详解】以及数列的应用根据题设条件,设数字,,,,,,,构成一个数列,可得数列满足,则,,.故选:B.【答案点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.5、C【答案解析】
由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【题目详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【答案点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.6、A【答案解析】
根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【题目详解】若“是递增数列”,则,即,化简得:,又,,,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件.故选:.【答案点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.7、D【答案解析】
先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【题目详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【答案点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.8、A【答案解析】
根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【题目详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【答案点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.9、C【答案解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【题目详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【答案点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.10、A【答案解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.11、C【答案解析】
解对数不等式求得集合,由此求得两个集合的交集.【题目详解】由,解得,故.依题意,所以.故选:C【答案点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.12、A【答案解析】
将已知条件转化为的形式,由此确定数列为的项.【题目详解】由于等差数列中,所以,化简得,所以为.故选:A【答案点睛】本小题主要考查等差数列的基本量计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
先计算平均数再求解方差与标准差即可.【题目详解】解:样本的平均数,这组数据的方差是标准差,故答案为:【答案点睛】本题主要考查了标准差的计算,属于基础题.14、【答案解析】
设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值.【题目详解】设桶的底面半径为,高为,则,故,圆通的造价为解法一:当且仅当,即时取等号.解法二:,则,令,即,解得,此函数在单调递增;令,即,解得,此函数在上单调递减;令,即,解得,即当时,圆桶的造价最低.所以故答案为:【答案点睛】本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题.15、【答案解析】
由于,且,则,得,则.16、【答案解析】
根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求得切线方程,通过对比系数求得的值.【题目详解】,则,所以切点为,故切线为,即,故.故答案为:【答案点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【答案解析】
(1)取的中点,连接,,由,进而,由,得.进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中点,上的点,使,连接,得,,得二面角的平面角为,再求解即可【题目详解】(1)证明:取的中点,连接,,由已知得,所以,又点是的中点,所以.因为,点是线段的中点,所以.又因为,所以,从而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,,,,所以,,.设平面的法向量为,由,得,令,得.同理,设平面的法向量为,由,得,令,得.所以二面角的余弦值为.(方法二)取的中点,上的点,使,连接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角为.又计算得,,,所以.【答案点睛】本题考查线面垂直的判定,考查空间向量求二面角,考查空间想象及计算能力,是中档题18、(1)证明见解析(2)【答案解析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【题目详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,,,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以【答案点睛】本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.19、(1)见解析(2)【答案解析】
(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.【题目详解】(1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【答案点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.20、(1);函数的单调递减区间为,单调递增区间为;(2)详见解析.【答案解析】
试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)由题得,函数的定义域为,,因为曲线在点处的切线方程为,所以解得.令,得,当时,,在区间内单调递减;当时,,在区间内单调递增.所以函数的单调递减区间为,单调递增区间为.(2)由(1)得,.由,得,即.要证,需证,即证,设,则要证,等价于证:.令,则,∴在区间内单调递增,,即,故.21、(1);(2).【答案解析】
(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 帝尔婚庆服务合同中的合同变更条件3篇
- 旅游品质控制劳动合同模板3篇
- 安心变更保险合同修改承诺书3篇
- 安装合同格式安装3篇
- 挡水墙施工合同书3篇
- 旅游小镇建设合同2篇
- 常用授权委托书模板律所适用3篇
- 布线施工合同3篇
- 教育机构建筑改造协议3篇
- 工程委托书范本3篇
- 常用吊具索具报废标准2018
- 中国合唱歌曲精选100首
- 古希腊历史简介
- 五年级上册数学课件 -《平行四边形的面积》 人教版 (共12张PPT)
- 不动产登记中心-档案部门-档案工作-汇报-数字化81页PPT课件
- 卫生间厨房间常见质量问题及防治措施
- 旅游高峰及节假日期间、灾情等特殊时期保洁的具体保证措施
- 幼儿园生成课程与预成课程
- 时间序列分析论文
- 轻型货车设计
- 实际问题与反比例函数(1)
评论
0/150
提交评论