统计指数课件002_第1页
统计指数课件002_第2页
统计指数课件002_第3页
统计指数课件002_第4页
统计指数课件002_第5页
已阅读5页,还剩101页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

居民消费价格指数(CPI)、上证指数、深证指数、道琼斯指数……!第六章统计指数居民消费价格指数(CPI)、上证指数、深证指数、道琼斯指数…了解指数的概念及分类掌握综合指数及平均指数的编制方法掌握因素分析法。第六章统计指数了解指数的概念及分类第六章统计指数Price指数起源于人们对价格动态的关注。今天的面包价格昨天的面包价格个体价格指数今天的面包、鸡蛋、香肠等等价格昨天的面包、鸡蛋、香肠等等价格综合价格指数问题的提出Price指数起源于人们对价格动态的关注。今天的面包价格昨天

第一节指数的意义和分类一、指数的概念和基本特点(一)概念:统计指数就是对有关现象进行比较分析的一种相对比率统计指数有广义和狭义之分

所有比较相对数不能直接加总多因素构成的相对数统计指数广义指数狭义指数第一节指数的概念广义:任何两个数值对比形成的相对数,通常表现为百分数,表示以对比基准为100相比,所要考察的现象水平相当于基数的多少。狭义:是一种特殊的动态相对数,是综合反映不能直接加总的现象总体在不同时间上变动的相对程度和方向。指数的概念(二)基本特征1、统计指数通常以相对数形式(百分比)来表示的。2、综合反映复杂现象总体数量变化关系,具有平均性质。如各种商品价格变动方向和幅度经常不一致,有的价格上升,有的则价格下降。且上升和下降的幅度不同,综合指数(商品价格总指数)体现了综合变动的结果。表明各种商品价格变动的平均水平。(二)基本特征二、意义课本P1881、综合反映现象总体的变动方向和变动程度。2、分析现象总体变动中各种因素的影响方向和影响程度。3、分析研究现象总体长时间内发展变化趋势。4、对社会经济现象进行综合评价与测定二、意义课本P188⒈按说明现象的范围不同分为

个体指数总指数2.按指标的不同作用分为

数量指标指数质量指标指数三、指数分类——五种(见P189)⒈按说明现象的范围不同分为 个体指数总指数2.按指标的不同⒊按指数所基期的不同可分为定基指数环比指数4.按指数的表现形式不同综合指数算术平均指数调和平均指数5.按指数在指数体系中的位置与作用不同

总变动指数影响因素指数⒊按指数所基期的不同可分为定基指数环比指数4.按指数的表了解指数的概念及分类掌握综合指数及平均指数的编制方法掌握因素分析法。第六章统计指数了解指数的概念及分类第六章统计指数第二节综合指数综合指数是两个时期总量指标对比形成的指数,以测定所研究现象的变动程度。在总量指标中包含两个或两个以上的因素,将其中被研究因素以外的所有因素固定下来,仅观察被研究因素的变动情况。同度量因素指把不能直接相加的指标,过渡为可以相加的指标的因素。在综合指数计算过程中,同度量因素应加以固定,才能反映指数化因素的变动情况指在指数分析中被研究的指标指数化因素第二节综合指数综合指数是两个时期总量指标对比形成的指数,根据客观现象间的内在联系,引入同度量因素;将同度量因素固定,以消除同度量因素变动影响将两个不同时期的总量指标对比,以测定指数化指标的数量变动程度。基本编制原理同度量因素指数化因素根据客观现象间的内在联系,引入同度量因素;基本编制原理同度量表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————————【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示表某商店三种商品统计表商品名称计量单位销售量价格/元根据同度量因素的固定时期的不同,可分为拉氏指数和帕氏指数1拉氏指数是同度量因素固定在基期的综合指数。

2帕氏指数是同度量因素固定在报告期的综合指数。

根据同度量因素的固定时期的不同,可分为1拉氏指数2拉氏(LASPEYRE)指数的公式——将作为权数的同度量因素固定在基期,按基期权数加权拉氏(LASPEYRE)指数的公式表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————26—28.8—【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算拉氏指数法的销售量指数?将价格固定在基期数量指标综合指数三种商品销售量报告期比基期增长10.77%表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————26—28.828.5【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算拉氏指数法的价格指数?将销售量固定在基期质量指标综合指数三种商品价格报告期比基期增长9.62%表某商店三种商品统计表商品名称计量单位销售量价格/元帕氏(Paasche)指数的公式——将作为权数的同度量因素固定在报告期,按报告期权数加权帕氏(Paasche)指数的公式表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算帕氏指数法的销售量指数?将价格固定在报告期数量指标综合指数三种商品价格报告期比基期增长10.44%%表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算帕氏指数法的价格指数?将销售量固定在报告期质量指标综合指数三种商品价格报告期比基期增长9.29%表某商店三种商品统计表商品名称计量单位销售量价格/元

注意:我国统计实务中,编制数量指标综合指数时习惯采用拉氏公式,而编制质量指标综合指数采用帕式公式。

小结:⒈数量指标综合指数的编制(拉氏指数)—采用基期的质量指标作为同度量因素⒉质量指标综合指数的编制(帕氏指数)—采用报告期的数量指标作为同度量因素小结:⒈数量指标综合指数的编制(拉氏指数)⒉质量指标综合指练习:P213二、计算题1.练习:三、指数数列(一)定基指数与环比指数1、数量指标指数(拉氏指数—将价格固定在基期)定基指数:基期为0期,价格固定在0期,数量本期与0期比环比指数:基期为上期,价格固定在上期,数量本期与上期比2、质量指标指数(帕氏指数——将数量固定在报告期)定基指数:价格本期与0期比环比指数:价格本期与上期比三、指数数列(二)不变权数与可变权数不变权数:在整个指数数列中同度量因素始终属于某一固定时期如:数量指标定基指数数列可比权数:在指数数列中,同度量因素会随时期不断改变如:数量指标环比指数数列和质量指标指数数列(二)不变权数与可变权数第三节平均数指数

平均数指数也是总指数的基本形式之一编制综合指数需要掌握一定的资料,如三种现象总体指标:。一般地讲,个别现象指数如个别商品数量指数()和价格系数()容易得到。现象总体指标如报告销售额和基期销售额也容易得到。但的资料不易取得。由于条件限制。掌握资料不全面,这就要将综合指数变为平均数形式求总指数平均数指数是个体指数的平均数,在一定条件下是综合指数的变形。但平均数指数与综合指数的编制方法不同,平均数指数编制的基本方法则是“先对比,后平均”。第三节平均数指数平均数指数是个体指数的加权平均数注:加权平均指数实质上是相应的综合指数变形加权调和平均指数加权算术平均指数平均指数的种类平均数指数是个体指数的加权平均数注:加权平均指数实质上是相应一、加权算术平均数指数

1、掌握条件:个体数量指标(销售量)指数()和基期现象总体指标(销售额)

2、采用加权算术平均数指数编制数量指标指数一、加权算术平均数指数表

销售资料表产品销售量销售量个体指数(%)基期销售额/万元基期q0报告期q1kq=q1/q0p0q0甲1000115011510乙2000220011010丙300031501056合计———26【例6-4】已知报告期、基期三种商品的销售量及个体销售量指数kq、基期商品销售额,求三种商品销售量总指数表销售资料表产品销售量销售量个体指数(%)基期销售额表

销售资料表产品销售量销售量个体指数(%)基期销售额/万元kqp0q0基期q0报告期q1kq=q1/q0p0q0甲100011501151011.5乙200022001101011.0丙3000315010566.3合计———2628.8【例6-4】已知报告期、基期三种商品的销售量及个体销售量指数kq、基期商品销售额,求三种商品销售量总指数表销售资料表产品销售量销售量个体指数(%)基期销售额二、加权调和平均数指数1、掌握条件:个体质量指标(价格)指数(

)和报告期现象总体指标(销售额)2、采用加权调和平均数指数编制质量指标指数。二、加权调和平均数指数表

销售资料表产品价格/元价格个体指数(%)报告期销售额/万元基期p0报告期p1kp=p1/p0p1q1甲10010010011.5乙505511012.1丙20251257.875合计———31.475【例】已知报告期、基期三种商品的价格及个体价格指数kp、报告期商品销售额,求三种商品价格总指数表销售资料表产品价格/元价格个体指数(%)报告期销售表

销售资料表产品价格/元价格个体指数(%)报告期销售额/万元基期p0报告期p1kp=p1/p0p1q1甲10010010011.511.5乙505511012.111.0丙20251257.8756.3合计———31.47528.8【例】已知报告期、基期三种商品的价格及个体价格指数kp、报告期商品销售额,求三种商品价格总指数表销售资料表产品价格/元价格个体指数(%)报告期销售课堂练习《统计学》作业(三)第三题课堂练习《统计学》作业(三)了解指数的概念及分类掌握综合指数及平均指数的编制方法掌握因素分析法。第六章统计指数了解指数的概念及分类第六章统计指数第四节指数体系及因素分解

一、指数体系的概念几个指数之间在一定的经济联系基础上所结成的较为严密的数量关系式两个因素指数中通常一个为数量指标指数,另一个为质量指标指数总变动指数等于各因素指数的乘积如商品销售的变动受销售量和价格两个因素的影响,销售额、销售量、价格三者之间的经济联系,决定三者的关系为:销售额=销售量×价格第四节指数体系及因素分解商品销售额指数=销售量指数×价格指数缩写kpq=kq×kp商品销售额的增减额=销售量变动影响增减额+价格变动影响增减额∑p1q1-∑p0q0=(∑p0q1-∑p0q0)+(∑p1q1-∑p0q1)商品销售额指数=销售量指数×价格指数注意:1.社会经济现象之间只有在数量上存在乘积关系,其指数才有乘积关系,才能构成指数体系并进行因素分解。2.进行指数体系分析时,质量指标指数和数量指标指数的同度量因素选择所属时期相悖才能保证等式成立。参见课本P182——通常质量指标指数的同度量因素选择固定在报告期(帕氏指数),而数量指标指数的同度量因素选择固定在基期(拉氏指数)注意:二、因素分析法(一)总量指标变动的因素分析1、总量指标两因素分析销售额指数=销售量指数×价格指数(现象总体指数)(影响因素指数)二、因素分析法表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5指数(相对数)表明,报告期销售额比基期增长21.06%绝对数表明,报告期销售额比基期增加了5.475万元表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5从相对数看,由于报告期销售量比基期增加使销售额增长10.77%从绝对数看,由于报告期销售量比基期增加使销售额增加2.8万元。表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5从相对数看,由于报告期价格比基期上升,使销售额增长9.29%从绝对数看,由于指数报告期价格比基期上升,使销售额2.675万元表某商店三种商品统计表商品名称计量单位销售量价格/元指数体系中:指数相对数和绝对数的关系

综合分析:三种商品销售额报告期比基期增长21.06%增加5.475万元,是销售量和价格两因素变动共同影响的结果。其中由于销售量报告期比基期增长10.77%,增加销售额2.8万元;价格报告期比基期上升9.29%增加销售额2.675万元指数体系中:指数相对数和绝对数的关系2.总量指标变动的多因素分析复杂社会经济现象,受多个因素的影响,因此需要对社会经济现象变动进行二个以上多因素分析,以测定各因素变动对现象总体变动的影响,例如:原材料消耗费用额=产品产量×单位产品原材料消耗定额×原材料价格利润额=销售量×价格×利润率(1)连锁代替法利用指标体系进行多因素分析,一般采用连锁替代法。所谓连锁替代法,就是在被分析指标因素结合式中,根据各因素的性质和相互联系的数量关系,将各个因素的基期数字顺次以报告期数替代,有多少因素就替代多少次,每次替代的结果与替代前的结果对比,从相对数和绝对数两个方向分析各因素对现象总体的影响。2.总量指标变动的多因素分析如影响利润额变动各因素排列利润额=销售量×销售价格×利润率销售额单位产品利润额运用连锁替代法应注意的问题:第一:分析其中一个因素的变动对现象总变动的影响时,要将其他因素固定。第二:各因素排序,一般先数量指标后质量指标。第三:相邻因素乘积要有明确经济意义。如影响利润额变动各因素排列运用连锁替代法应注意的问题:(2)连锁替代法步骤以企业利润额分析例,用q,p,c分别表示销售量,销售价格、利润率三个因素(更多因素原理相同)。报告期利润额y1=q1×p1×c1

基期利润额y0=q0×p0×c0利润总体变动程度利润总体变动绝对值(2)连锁替代法步骤利润总体变动程度三个因素变动对利润额影响——进行连锁替代替代的起点q0p0c0

第一次替代q1p0

c0第二次替代q1p1c0

第三次替代q1p1c1三个因素变动对利润额影响——进行连锁替代

q因素影响程度

q因素影响绝对值②用p1替代p0

p因素影响程度p因素影响绝对值③用c1替代c0

c因素影响程度c因素影响绝对值①用q1替代q0q因素影响程度①用q1替代q0

通过以上综合分析,利润额报告期比基期期增长33.93%是由于销售量增长7.87%,价格下降5%,利润率提高30.7%,三个因素共同影响的结果.从绝对值来看,利润额报告期比基期增加15.1万元,是由于销售量增加使利润额增加3.5万元,由于价格下降使利润额减少2.4万元,由于利润率提高使利润额增加14万元,三个因素共同影响的结果.④验证:通过以上综合分析,利润额报告期比基期期增长33.93%是由(二)平均指标变动的因素分析(了解)

(二)平均指标变动的因素分析(了解)(2)固定构成指数(2)固定构成指数第六章统计指数课件三种指数的关系:可变构成指数=固定构成指数×结构影响指数三种指数的关系:居民消费价格指数(CPI)、上证指数、深证指数、道琼斯指数……!第六章统计指数居民消费价格指数(CPI)、上证指数、深证指数、道琼斯指数…了解指数的概念及分类掌握综合指数及平均指数的编制方法掌握因素分析法。第六章统计指数了解指数的概念及分类第六章统计指数Price指数起源于人们对价格动态的关注。今天的面包价格昨天的面包价格个体价格指数今天的面包、鸡蛋、香肠等等价格昨天的面包、鸡蛋、香肠等等价格综合价格指数问题的提出Price指数起源于人们对价格动态的关注。今天的面包价格昨天

第一节指数的意义和分类一、指数的概念和基本特点(一)概念:统计指数就是对有关现象进行比较分析的一种相对比率统计指数有广义和狭义之分

所有比较相对数不能直接加总多因素构成的相对数统计指数广义指数狭义指数第一节指数的概念广义:任何两个数值对比形成的相对数,通常表现为百分数,表示以对比基准为100相比,所要考察的现象水平相当于基数的多少。狭义:是一种特殊的动态相对数,是综合反映不能直接加总的现象总体在不同时间上变动的相对程度和方向。指数的概念(二)基本特征1、统计指数通常以相对数形式(百分比)来表示的。2、综合反映复杂现象总体数量变化关系,具有平均性质。如各种商品价格变动方向和幅度经常不一致,有的价格上升,有的则价格下降。且上升和下降的幅度不同,综合指数(商品价格总指数)体现了综合变动的结果。表明各种商品价格变动的平均水平。(二)基本特征二、意义课本P1881、综合反映现象总体的变动方向和变动程度。2、分析现象总体变动中各种因素的影响方向和影响程度。3、分析研究现象总体长时间内发展变化趋势。4、对社会经济现象进行综合评价与测定二、意义课本P188⒈按说明现象的范围不同分为

个体指数总指数2.按指标的不同作用分为

数量指标指数质量指标指数三、指数分类——五种(见P189)⒈按说明现象的范围不同分为 个体指数总指数2.按指标的不同⒊按指数所基期的不同可分为定基指数环比指数4.按指数的表现形式不同综合指数算术平均指数调和平均指数5.按指数在指数体系中的位置与作用不同

总变动指数影响因素指数⒊按指数所基期的不同可分为定基指数环比指数4.按指数的表了解指数的概念及分类掌握综合指数及平均指数的编制方法掌握因素分析法。第六章统计指数了解指数的概念及分类第六章统计指数第二节综合指数综合指数是两个时期总量指标对比形成的指数,以测定所研究现象的变动程度。在总量指标中包含两个或两个以上的因素,将其中被研究因素以外的所有因素固定下来,仅观察被研究因素的变动情况。同度量因素指把不能直接相加的指标,过渡为可以相加的指标的因素。在综合指数计算过程中,同度量因素应加以固定,才能反映指数化因素的变动情况指在指数分析中被研究的指标指数化因素第二节综合指数综合指数是两个时期总量指标对比形成的指数,根据客观现象间的内在联系,引入同度量因素;将同度量因素固定,以消除同度量因素变动影响将两个不同时期的总量指标对比,以测定指数化指标的数量变动程度。基本编制原理同度量因素指数化因素根据客观现象间的内在联系,引入同度量因素;基本编制原理同度量表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————————【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示表某商店三种商品统计表商品名称计量单位销售量价格/元根据同度量因素的固定时期的不同,可分为拉氏指数和帕氏指数1拉氏指数是同度量因素固定在基期的综合指数。

2帕氏指数是同度量因素固定在报告期的综合指数。

根据同度量因素的固定时期的不同,可分为1拉氏指数2拉氏(LASPEYRE)指数的公式——将作为权数的同度量因素固定在基期,按基期权数加权拉氏(LASPEYRE)指数的公式表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————26—28.8—【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算拉氏指数法的销售量指数?将价格固定在基期数量指标综合指数三种商品销售量报告期比基期增长10.77%表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————26—28.828.5【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算拉氏指数法的价格指数?将销售量固定在基期质量指标综合指数三种商品价格报告期比基期增长9.62%表某商店三种商品统计表商品名称计量单位销售量价格/元帕氏(Paasche)指数的公式——将作为权数的同度量因素固定在报告期,按报告期权数加权帕氏(Paasche)指数的公式表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算帕氏指数法的销售量指数?将价格固定在报告期数量指标综合指数三种商品价格报告期比基期增长10.44%%表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5【例6-1】假设某商店销售三种商品,每种商品基期和报告期的销售量与价格如下表所示,计算帕氏指数法的价格指数?将销售量固定在报告期质量指标综合指数三种商品价格报告期比基期增长9.29%表某商店三种商品统计表商品名称计量单位销售量价格/元

注意:我国统计实务中,编制数量指标综合指数时习惯采用拉氏公式,而编制质量指标综合指数采用帕式公式。

小结:⒈数量指标综合指数的编制(拉氏指数)—采用基期的质量指标作为同度量因素⒉质量指标综合指数的编制(帕氏指数)—采用报告期的数量指标作为同度量因素小结:⒈数量指标综合指数的编制(拉氏指数)⒉质量指标综合指练习:P213二、计算题1.练习:三、指数数列(一)定基指数与环比指数1、数量指标指数(拉氏指数—将价格固定在基期)定基指数:基期为0期,价格固定在0期,数量本期与0期比环比指数:基期为上期,价格固定在上期,数量本期与上期比2、质量指标指数(帕氏指数——将数量固定在报告期)定基指数:价格本期与0期比环比指数:价格本期与上期比三、指数数列(二)不变权数与可变权数不变权数:在整个指数数列中同度量因素始终属于某一固定时期如:数量指标定基指数数列可比权数:在指数数列中,同度量因素会随时期不断改变如:数量指标环比指数数列和质量指标指数数列(二)不变权数与可变权数第三节平均数指数

平均数指数也是总指数的基本形式之一编制综合指数需要掌握一定的资料,如三种现象总体指标:。一般地讲,个别现象指数如个别商品数量指数()和价格系数()容易得到。现象总体指标如报告销售额和基期销售额也容易得到。但的资料不易取得。由于条件限制。掌握资料不全面,这就要将综合指数变为平均数形式求总指数平均数指数是个体指数的平均数,在一定条件下是综合指数的变形。但平均数指数与综合指数的编制方法不同,平均数指数编制的基本方法则是“先对比,后平均”。第三节平均数指数平均数指数是个体指数的加权平均数注:加权平均指数实质上是相应的综合指数变形加权调和平均指数加权算术平均指数平均指数的种类平均数指数是个体指数的加权平均数注:加权平均指数实质上是相应一、加权算术平均数指数

1、掌握条件:个体数量指标(销售量)指数()和基期现象总体指标(销售额)

2、采用加权算术平均数指数编制数量指标指数一、加权算术平均数指数表

销售资料表产品销售量销售量个体指数(%)基期销售额/万元基期q0报告期q1kq=q1/q0p0q0甲1000115011510乙2000220011010丙300031501056合计———26【例6-4】已知报告期、基期三种商品的销售量及个体销售量指数kq、基期商品销售额,求三种商品销售量总指数表销售资料表产品销售量销售量个体指数(%)基期销售额表

销售资料表产品销售量销售量个体指数(%)基期销售额/万元kqp0q0基期q0报告期q1kq=q1/q0p0q0甲100011501151011.5乙200022001101011.0丙3000315010566.3合计———2628.8【例6-4】已知报告期、基期三种商品的销售量及个体销售量指数kq、基期商品销售额,求三种商品销售量总指数表销售资料表产品销售量销售量个体指数(%)基期销售额二、加权调和平均数指数1、掌握条件:个体质量指标(价格)指数(

)和报告期现象总体指标(销售额)2、采用加权调和平均数指数编制质量指标指数。二、加权调和平均数指数表

销售资料表产品价格/元价格个体指数(%)报告期销售额/万元基期p0报告期p1kp=p1/p0p1q1甲10010010011.5乙505511012.1丙20251257.875合计———31.475【例】已知报告期、基期三种商品的价格及个体价格指数kp、报告期商品销售额,求三种商品价格总指数表销售资料表产品价格/元价格个体指数(%)报告期销售表

销售资料表产品价格/元价格个体指数(%)报告期销售额/万元基期p0报告期p1kp=p1/p0p1q1甲10010010011.511.5乙505511012.111.0丙20251257.8756.3合计———31.47528.8【例】已知报告期、基期三种商品的价格及个体价格指数kp、报告期商品销售额,求三种商品价格总指数表销售资料表产品价格/元价格个体指数(%)报告期销售课堂练习《统计学》作业(三)第三题课堂练习《统计学》作业(三)了解指数的概念及分类掌握综合指数及平均指数的编制方法掌握因素分析法。第六章统计指数了解指数的概念及分类第六章统计指数第四节指数体系及因素分解

一、指数体系的概念几个指数之间在一定的经济联系基础上所结成的较为严密的数量关系式两个因素指数中通常一个为数量指标指数,另一个为质量指标指数总变动指数等于各因素指数的乘积如商品销售的变动受销售量和价格两个因素的影响,销售额、销售量、价格三者之间的经济联系,决定三者的关系为:销售额=销售量×价格第四节指数体系及因素分解商品销售额指数=销售量指数×价格指数缩写kpq=kq×kp商品销售额的增减额=销售量变动影响增减额+价格变动影响增减额∑p1q1-∑p0q0=(∑p0q1-∑p0q0)+(∑p1q1-∑p0q1)商品销售额指数=销售量指数×价格指数注意:1.社会经济现象之间只有在数量上存在乘积关系,其指数才有乘积关系,才能构成指数体系并进行因素分解。2.进行指数体系分析时,质量指标指数和数量指标指数的同度量因素选择所属时期相悖才能保证等式成立。参见课本P182——通常质量指标指数的同度量因素选择固定在报告期(帕氏指数),而数量指标指数的同度量因素选择固定在基期(拉氏指数)注意:二、因素分析法(一)总量指标变动的因素分析1、总量指标两因素分析销售额指数=销售量指数×价格指数(现象总体指数)(影响因素指数)二、因素分析法表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5指数(相对数)表明,报告期销售额比基期增长21.06%绝对数表明,报告期销售额比基期增加了5.475万元表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p1p0q0p1q1p0q1p1q0甲m100011501001001011.511.510乙t2000220050551012.111.011丙件30003150202567.8756.37.5合计—————2631.47528.828.5从相对数看,由于报告期销售量比基期增加使销售额增长10.77%从绝对数看,由于报告期销售量比基期增加使销售额增加2.8万元。表某商店三种商品统计表商品名称计量单位销售量价格/元表

某商店三种商品统计表商品名称计量单位销售量价格/元销售额/万元基期q0报告期q1基期p0报告期p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论