




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.2.设,其中a,b是实数,则()A.1 B.2 C. D.3.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为()A.4 B.3 C.2 D.14.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.35.设为等差数列的前项和,若,则A. B.C. D.6.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.7.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.8.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限9.设i为数单位,为z的共轭复数,若,则()A. B. C. D.10.等比数列的前项和为,若,,,,则()A. B. C. D.11.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.12.若,则,,,的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为偶函数,则_____.14.若复数(是虚数单位),则________15.在中,内角所对的边分别是.若,,则__,面积的最大值为___.16.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值551484031097298118.(12分)2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.19.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.20.(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.21.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值.22.(10分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.2、D【解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.3、C【解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.【详解】①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.故选:C.【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.4、C【解析】
设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.5、C【解析】
根据等差数列的性质可得,即,所以,故选C.6、B【解析】
利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.7、D【解析】
由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.8、C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.9、A【解析】
由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.10、D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.11、D【解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.12、D【解析】因为,所以,因为,,所以,.综上;故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.14、【解析】
直接根据复数的代数形式四则运算法则计算即可.【详解】,.【点睛】本题主要考查复数的代数形式四则运算法则的应用.15、1【解析】
由正弦定理,结合,,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1).1(2).【点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.16、【解析】
求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)148万亿元.【解析】
(1)由散点图知更适宜,对两边取自然对数得,令,,,则,再利用线性回归方程的计算公式计算即可;(2)将代入所求的回归方程中计算即可.【详解】(1)根据数据及图表可以判断,更适宜作为全国GDP总量关于的回归方程.对两边取自然对数得,令,,,得.因为,所以,所以关于的线性回归方程为,所以关于的回归方程为.(2)将代入,其中,于是2020年的全国GDP总量约为:万亿元.【点睛】本题考查非线性回归方程的应用,在处理非线性回归方程时,先作变换,转化成线性回归直线方程来处理,是一道中档题.18、(1)分布列见解析,(1)【解析】
(1)根据频率分布直方图及抽取总人数,结合各组频率值即可求得各组抽取的人数;的可能取值为0,1,1,由离散型随机变量概率求法即可求得各概率值,即可得分布列;由数学期望公式即可求得其数学期望.(1)先求得年龄在内的频率,视为概率.结合二项分布的性质,表示出,令,化简后可证明其单调性及取得最大值时的值.【详解】(1)按分层抽样的方法拉取的8人中,年龄在的人数为人,年龄在内的人数为人.年龄在内的人数为人.所以的可能取值为0,1,1.所以,,,所以的分市列为011.(1)设在抽取的10名市民中,年龄在内的人数为,服从二项分布.由频率分布直方图可知,年龄在内的频率为,所以,所以.设,若,则,;若,则,.所以当时,最大,即当最大时,.【点睛】本题考差了离散型随机变量分布列及数学期望的求法,二项分布的综合应用,属于中档题.19、(1)见解析;(2)【解析】
(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌20、(1);(2).【解析】
(1)由l参数方程与椭圆方程联立可得A、B两点参数和,再利用M点的参数为A、B两点参数和的一半即可求M的坐标;(2)利用直线参数方程的几何意义得到,再利用计算即可,但要注意判别式还要大于0.【详解】(1)由已知,曲线的参数方程为(为参数),其普通方程为,当时,将(为参数)代入得,设直线l上A、B两点所对应的参数为,中点M所对应的参数为,则,所以的坐标为;(2)将代入得,则,因为即,所以,故,由得,所以.【点睛】本题考查了伸缩变换、参数方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道中档题.21、(1),;(2)【解析】
(1)先将直线l和圆C的参数方程化成普通方程,再分别求出极坐标方程;(2)写出点M和点N的极坐标,根据极径的定义分别表示出和,利用三角函数的性质求出的最大值.【详解】解:(1),,即极坐标方程为,,极坐标方程.(2)由题可知,,当时,.【点睛】本题考查了参数方程、普通方程和极坐标方程的互化问题,极径的定义,以及三角函数的恒等变换,属于中档题.22、(1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国大麻纸行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国夏凉被行业市场发展分析及发展趋势与投资战略研究报告
- 2025-2030中国基于企业游戏的学习行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国啤酒杯行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国吸尘袋纸行业发展分析及投资前景预测研究报告
- 2025-2030中国口罩和手术服行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国压敏粘合剂行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国卡车油箱行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国医用气体报警管理系统行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国农用潜水泵行业市场发展趋势与前景展望战略研究报告
- 团章考试试题及答案
- 厂房、综合楼工程脚手架专项安全方案
- 企业服饰生产制造单模板
- 10KV配单系统柱上开关培训资料
- 江苏旅游职业学院辅导员考试题库
- 张朋《了凡四训》课件
- 2023年4月全国自学考试00147人力资源管理一试题及答案
- 生药学全套课件
- 广东省五年一贯制语文考试题目
- 幼儿园家长进课堂讲课
- 建筑工程管理毕业论文
评论
0/150
提交评论