![中考二次函数压轴题专题分类训练题_第1页](http://file4.renrendoc.com/view/b2fea8e1f5d453ef9aae682cf9f12a6b/b2fea8e1f5d453ef9aae682cf9f12a6b1.gif)
![中考二次函数压轴题专题分类训练题_第2页](http://file4.renrendoc.com/view/b2fea8e1f5d453ef9aae682cf9f12a6b/b2fea8e1f5d453ef9aae682cf9f12a6b2.gif)
![中考二次函数压轴题专题分类训练题_第3页](http://file4.renrendoc.com/view/b2fea8e1f5d453ef9aae682cf9f12a6b/b2fea8e1f5d453ef9aae682cf9f12a6b3.gif)
![中考二次函数压轴题专题分类训练题_第4页](http://file4.renrendoc.com/view/b2fea8e1f5d453ef9aae682cf9f12a6b/b2fea8e1f5d453ef9aae682cf9f12a6b4.gif)
![中考二次函数压轴题专题分类训练题_第5页](http://file4.renrendoc.com/view/b2fea8e1f5d453ef9aae682cf9f12a6b/b2fea8e1f5d453ef9aae682cf9f12a6b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
请您阅读后下载使用PAGE2中考二次函数压轴题专题分类训练题型一:面积问题【例1】如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;xCOyABD11图2(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PABxCOyABD11图2【变式练习】1.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.AAxyBO2.如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;CEDGAxyOCEDGAxyOBF△EFK的面积最大?并求出最大面积.3.如图,已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.题型二:构造直角三角形【例2】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90º的点P的坐标.EE【变式练习】1.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.2.在平面直角坐标系xOy中,已知抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COS∠BCO=。(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?3.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值4.如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2)),与的面积大小关系如何?当时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.第26题图(1)第26题图(1)图(2)题型三:构造等腰三角形【例3】如图,已知抛物线(a≠0)与轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)在x轴上是否存在一点Q使得△ACQ为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【变式练习】1.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.2.如图,抛物线经过的三个顶点,已知轴,点在轴上,点C在轴上,且AC=BC.(1)写出A,B,C三点的坐标并求抛物线的解析式;(2)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.AACByx0113.已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.题型四:构造相似三角形【例4】如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式练习】1.如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.
(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【例5】如图,已知抛物线y=x2-(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为,点C的坐标为(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.【变式练习】1.如图,平面直角坐标系中,已知点A(2,3),线段垂直于轴,垂足为,将线段绕点A逆时针方向旋转90°,点B落在点处,直线与轴的交于点.(1)试求出点D的坐标;(2)试求经过、、三点的抛物线的表达式,并写出其顶点E的坐标;(3)在(2)中所求抛物线的对称轴上找点,使得以点、、为顶点的三角形与△ACD相似.(图7)(图7)11xyAO2.已知直线与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转,使点A落在点C,点B落在点D,抛物线过点A、D、C,其对称轴与直线AB交于点P,xyxyO11(2)求∠POC的正切值;(3)点M在x轴上,且△ABM与△APD相似,求点M的坐标。3.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.题型五:构造梯形【例6】已知,矩形OABC在平面直角坐标系中位置如图1所示,点A的坐标为(4,0),点C的坐标为,直线与边BC相交于点D.(1)求点D的坐标;(2)抛物线经过点A、D、O,求此抛物线的表达式;(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.【变式练习】1.已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.2.已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.3.如图1,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使以A、B、C、D为顶点的四边形为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.题型六:构造平行四边形【例7】如图,在平面直角坐标系中,抛物线经过A(—1,0),B(3,0),C(0,—1)三点。(1)求该抛物线的表达式;(2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标。 【变式练习】1.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.2.如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.3.如图,抛物线y=ax2+bx+c交x轴于点A(﹣3,0),点B(1,0),交y轴于点E(0,﹣3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=﹣x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.【例8】已知平面直角坐标系xOy(如图1),一次函数的图像与y轴交于点A,点M在正比例函数的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求点C的坐标.【变式练习】1.将抛物线c1:沿x轴翻折,得到抛物线c2,如图1所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.题型七:线段最值问题【例9】如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.【变式练习】1.如图,已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.(1)求此抛物线的解析式;(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.OOyxABC2.如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.【能力提升】1.已知,如图11,二次函数图象的顶点为,与轴交于、两点(在点右侧),点、关于直线:对称.(1)求、两点坐标,并证明点在直线上;(2)求二次函数解析式;(3)过点作直线∥交直线于点,、分别为直线和直线上的两个动点,连接、、,求和的最小值.图图11备用图2.如图.在直角坐标系中,已知点A(0.1.),B(.4).将点B绕点A顺时针方向旋转90°得到点C,顶点在坐标原点的抛物线经过点B.(1)求抛物线的解析式和点C的坐标;(2)抛物线上一动点P.设点P到x轴的距离为,点P到点A的距离为,试说明;(3)在(2)的条件下,请探究当点P位于何处时.△PAC的周长有最小值,并求出△PAC的周长的最小值。【例10】如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为(1,0)。(1)求该抛物线的解析式;(2)动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。【变式练习】1.如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(﹣1,0),B(﹣l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N.(1)求抛物线的解析式.(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE﹣QC|最大?并求出最大值.赠送:3461学习方法北京四中北京四中每年约有96%以上的毕业生高考成绩达到重点大学录取线,40%左右考入北大、清华两所著名高校。在这个神奇的学校流传这样一种经过反复验证的学习方法,简称“3461学习方法”,即为3个过程,4个环节,6个习惯、1个计划。
3461学习方法通过长时间反复的教学和学习实践验证:“3461学习方法”是提高学生学习成绩简单而且实用的一种方法。入格阶段:是学生初步了解学生学习方法的一般格式,只要通过模仿的形式产生。立格阶段:学生已经具备自学的能力,形成习惯并稳定的使用学习方法来完成学习任务,学习过程和学习环节完备而健全,学习方法实现了习惯化的要求。破格阶段:学习方法本身来说个获取知识一样是一个不断更新的过程,那么当学习成绩提高到一定程度的时候又需要学习方法的更新来适应新的学科的要求,例如初中阶段和高中阶段学习方法就有很大的差异,因此破格是学习方法发展的一个转折期。无格阶段:学习方法发展的最高阶段,充分认识各学科的学习规律,在无意识中完成对知识的认知过程。
虽然不可能有共同的学习方法,但是有一种学习习惯却是共同的,那就是自学,而正确的学习方法遵循是的循序渐进,熟读精思,把复杂的东西简单化,把单一的问题系统化,把孤立的问题全面化,把简单的东西细节化,而这就是3461系统学习策略的出发点。3个过程3个过程实际上就是把基础知识或者新的知识点让学生通过3轮进行反复的认知(即理解、消化、融会、贯通)的过程。学校学习:学校学习是最主要、最重要的学习方式。大多数基础知识都来源于学校老师的传授,由于学生基础知识不同、努力程度不同等等,导致很多学生均为一个老师教的,考试成绩差异却很大。家庭学习:是学校学习的补充,是较为重要的学习方式之一,若家庭学习做的较好的学生,其成绩也会不断得到提高。再学习:即日复习和周复习。学习是一个循序渐进的过程,应注重基础,查缺补漏的再学习。再学习并不是完全意义上的将所有知识点一字不漏的再学一遍,再学习应掌握方法和提高效率。
4个环节学:就是接受新知识。在校学习要紧跟跟教师的讲课进度,基础的知识点一定要理解消化,出现了差距一定要及时弥补,不要放松或者丢弃疑点,否则积少成多,会严重影响听课的质量,增加自己基础知识的学习负担。学生必须每天做日复习,并且复习应在做作业的前面完成。日复习做的好坏直接影响到学生当天完成老师作业正确率的高低和做题速度的快慢。查:就是对所学的知识进行巩固和检查,作业和考试是查的主要方式。查是对第一个环节学的质量进行分析和检验的一个超额虽解决针对性学习的一个先决条件。老师通过布置作业或安排考试的方式来检测学生所学的知识点是否掌握
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年铝元片项目可行性研究报告
- 2025年微型手电筒行业深度研究分析报告
- 氢项目可行性研究申请报告
- 2025年舒适型自行车鞍座项目投资可行性研究分析报告
- 2025年龙须酥项目可行性研究报告
- 2025年金属家倶行业深度研究分析报告
- 2021-2026年中国非公路自卸车行业发展监测及投资战略规划研究报告
- 2025年医药项目可行性研究报告
- 齐鲁报告2024上半年中国计算机视觉专题研究报告
- 纸包装材料生产项目可行性研究报告
- 杭州市淳安县国有企业招聘笔试真题2024
- 2024政府采购评审专家考试真题库及答案
- 2025年道路货运驾驶员从业资格证模拟考试题
- 数学-安徽省皖南八校2025届高三上学期12月第二次大联考试题和答案
- 退市新规解读-上海证券交易所、大同证券
- 融资报告范文模板
- 桃李面包盈利能力探析案例11000字
- GB/Z 30966.71-2024风能发电系统风力发电场监控系统通信第71部分:配置描述语言
- 脑梗死的护理查房
- 2025高考数学专项复习:概率与统计的综合应用(十八大题型)含答案
- 2024-2030年中国紫苏市场深度局势分析及未来5发展趋势报告
评论
0/150
提交评论