




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1Introduction
☆
FIRfilter:directdesignofDTfilterwiththeoftenaddedlinear-phaserequirement(1)WindowedFourierseriesapproach(§10.2)(2)Frequencysamplingapproach(Problem10.31,10.32)
(3)Computer-basedoptimizationmethod(§10.3)
Chap.10FIRDigitalFilterDesign1IntroductionChap.10FIRDi210.1PreliminaryConsiderationsForFIRsystem:realpolynomialapproximationifalinearphaseisdesired
10.1.1BasicApproachestoFIRDigitalFilterDesign210.1PreliminaryConsiderati310.1.2EstimationoftheFilterOrderKaiser’sFormulaForlowpassFIRfilterdesign:P397-398Bellanger’sFormulaHermann’sFormulaParametersseeP398.310.1.2EstimationoftheFil410.2DesignofFIRFiltersbyWindowing(P400)
10.2.1LeastIntegral-SquaredErrorDesignofFIRFilters410.2DesignofFIRFiltersb510.2.2ImpulseResponsesofIdealFiltersIdeallinearphaselowpassfilterIdeallinearphase
highpassfilter510.2.2ImpulseResponsesof6ImpulseResponsesofIdealFilters(II)Ideallinearphasebandpassfilter
Ideallinearphasebandstopfilter
6ImpulseResponsesofIdealFi7ImpulseResponsesofIdealFilters(III)IdealmultibandfilterIdealdiscrete-timeHilberttransformer
Idealdiscrete-timedifferentiator
7ImpulseResponsesofIdealFi8Gibbsphenomenon:
OscillatorybehaviorinthemagnituderesponseofcausalFIRfiltersdesignedutilizingtruncation10.2.3GibbsPhenomenon8Gibbsphenomenon:9mainlobesidelobeMainlobewidth--truncationperiodiccontinuousconvolution=N/210.2.3GibbsPhenomenon(II)9mainlobesidelobeMainlobewidt10-2/(N+1)10-2/(N+1)1110.2.3GibbsPhenomenon(III)1110.2.3GibbsPhenomenon(II12
Noscillatemorerapidly,buttheamplitudesofthelargestripples=constantFor,Nm
,sidelobe,
10.2.3GibbsPhenomenon(IV)(2)Fortheintegral
,oscillationwilloccurateachsidelobeofmovespastthediscontinuity(3)
ThemethodstoreduceGibbsphenomenon:taperingthewindowsmoothlytozeroateachend,butmasmoothtransitioninmagnitudespecifications12Noscillatemorerapi1310.2.4FixedWindowFunctions(1)Hanningwindow:
A=-B=1/2,C=0;Hammingwindow:A=0.54,B=-0.46,C=0Blackmanwindow:A=0.42,B=-0.5,C=0.08.Rectangularwindow:w[n]=u[n]–u[n–
N
–
1]
Hanning,Hamming,Blackman:
Bartlettwindow:triangular1310.2.4FixedWindowFunctio14P406Fig.10.6Commonlyusedfixedwindows10.2.4FixedWindowFunctions(II)N/2NRectangular
Hamming
HanningBartlett
Blackmann
w[n]
114P406Fig.10.6Commonlyu1510.2.4FixedWindowFunctions(III)P407Fig.10.750N1510.2.4FixedWindowFunctio1610.2.4FixedWindowFunctions(IV)Parameterspredictingtheperformanceofawindowmainlobewidth
relativesidelobelevel(dB)Sameripplesinpassbandandstopbandwidthoftransitionband1610.2.4FixedWindowFunctioTypeofwindowRelativeSidelobeLevel(dB)Main-lobewidthMinimumStopbandAttenuation(dB)TransitionBandwidthRect.13.34π/(N+1)20.91.84π/NBartlett26.58π/NHanning31.58π/N43.96.22π/NHamming42.78π/N54.56.64π/NBlackman58.112π/N75.311.12π/N1710.2.4FixedWindowFunctions(V)P408Table10.2’TypeofwindowRelativeSidelob1810.2.4FixedWindowFunctions(VI)ExampletoillustratetheeffectofwindowsN=50P4091810.2.4FixedWindowFunctio1910.2.4FixedWindowFunctions(VII)Computeimpulseresponseofthedesiredfilter(accordingtotheinverseFourierequation)(2)Determinethesuitablewindowbytheminimumstopbandattenuationand(3)DeterminethelengthofFIRbythetransitionwidth(4)ObtainthedesignedFIRfilter:StepsforFIRfilterdesign:1910.2.4FixedWindowFunctio20Example10.6Page410
DesignanFIRlowpassdigitalfilterwithspecifications:theattenuationofthestopbandshouldmorethan40dB;.2)AccordingtoTable10.2,wecouldselectHanning,hamming,Blackmanwindow,thenthebandwidthofthetransition
bandshouldsatisfy(for
Hanning)TypeI:N=32;TypeII:N=3310.2.4FixedWindowFunctions(VIII)1)i.e.Pleaseselectasuitablewindowfunctionanddeterminethesmallestlengthofthewindow.20Example10.6Page410Des2110.2.4FixedWindowFunctionsExampleShowthattheidealhighpasstransformerwithafrequencyresponsedefinedby(1)Determinetheimpulseresponseh[n],therelationofαandN?(2)Whattypeoflinear-phaseFIRfilter?(3)Writetheimpulseresponseh[n]
usingtheHannwindows-basemethod.Solution:2110.2.4FixedWindowFunctio2210.2.4FixedWindowFunctions2210.2.4FixedWindowFunctio2310.2.4FixedWindowFunctions(2)
IfNisevenwhen,thefilterhaslinearphaseisinteger,hd[n]isanti-symmetries,andh[n]=-h[N-n],thefilteristypeIII.IfNisoddisn’tinteger,hd[n]issymmetries,andh[n]=h[N-n],thefilteristypeII.2310.2.4FixedWindowFunctio2410.2.4FixedWindowFunctions(3)2410.2.4FixedWindowFunctio25with
=N/2.
β
controlstheside-lobeamplitudes(attenuation)
controlsthemainlobewidth
Predictionformula:–attenuation
s
=20log10δsβ–transitionregionwidthω=ωsωp
togetherwithattenuation
s
N(10.39’)10.2.5AdjustableWindowFunctions(P410)KaiserwindowN25with=N/2.(10.39’)10.2.526Amplitude0.305101520(10.41)(10.42)10.2.5AdjustableWindowFunctions(II)26Amplitude0.3051015227Kaiserwindowdesignexample(1)DeterminethewindowfunctionKaiserwindow:,Ni.e.,s=0.01,Assume:Question:IsitsuitableforNtobe23?27Kaiserwindowdesignex28Kaiserwindowdesignexample(II)(2)Thedesiredimpulseresponse28Kaiserwindowdesignex29Kaiserwindowdesignexample(III)(3)TheFIRfilterdesignedWhereN=24,=3.395TypeIlinearphaseFIR29Kaiserwindowdesignex3010.3CADofEquirippleLinear-PhaseFIRFiltersApproximationmethods:(2)LeastIntegral-SquaredapproximationWindowedFourierSeriesapproach(1)InterpolationFrequencysamplingapproach(3)ChebyshevapproximationEquirippleapproximationParks-McClellanAlgorithm3010.3CADofEquirippleLine3110.3CADofEquirippleLinear-PhaseFIRFilters(II)Weightederrorfunction:(10.47)or(10.62)(10.68)3110.3CADofEquirippleLine3210.3CADofEquirippleLinear-PhaseFIRFilters(III)ChebyshevorMinimaxcriterion:equirippleFIRfilterMinimizethepeakabsolutevalueofLinear-phaseFIRfiltersobtainedbythecriterionpolynomialapproximation3210.3CADofEquirippleLine3310.3CADofEquirippleLinear-PhaseFIRFilters(IV)AlternationTheorem:LetRbeaunionofdisjointclosedsubsetsofLetadesiredfunctionD(x)andweightingfunctionW(x)becontinuousonRDefinetheerrorfunction
E(x)=W(x)[PL(x)-D(x)]Maximumerror
3310.3CADofEquirippleLine3410.3CADofEquirippleLinear-PhaseFIRFilters(V)necessaryandsufficientconditionforPL(x)beingtheuniqueLthorderpolynomialundertheMinimax
criterioncanbeexpressedbythealternationtheorem:E(x)hasatleastL+2alterationsonF
,i.e.
xi,i=1,...,L’≥L+2suchthatxi
<xi+1,E(xi)=-E(xi+1),fori=1,...,L’-1andE(xi)
=±Emax,fori=1,...,L’3410.3CADofEquirippleLine3510.3CADofEquirippleLinear-PhaseFIRFilters(VI)Parks-McClellanAlgorithmIterativemethodtodeterminethealternationfrequenciesωi
andtheripple
1.initialize
ωi
pute—erpolateapolynomialbetweenthealternationpoints4.findthemaximum/minimumvaluesoftheerror5.if|E(ω)|≤
:stopelsecomputenewωi’asextremeofE(ω),andgoto2(elserecursive)3510.3CADofEquirippleLine3610.5FIRDigitalFilterDesignUsingMatlabOrderEstimation:kaiord()Kaiser’sFormulabellangord()Bellanger’sFormularemezord()Hermann’sFormulakaiserord()filterorderforKaiserwindow-baseddesign3610.5FIRDigitalFilterDes3710.5FIRDigitalFilterDesignUsingMatlab(II)Equiripplelinear-phaseFIRfilterdesign:remez()equirippleFIRfilterdesignusingParks-McClellanalgorithmExample10.15DesignanequirippleFIRfilterwithspecifications:3710.5FIRDigitalFilterDes3810.5FIRDigitalFilterDesignUsingMatlab(III)3810.5FIRDigitalFilterDes3910.5FIRDigitalFilterDesignUsingMatlab(IV)3910.5FIRDigitalFilterDes4010.5FIRDigitalFilterDesignUsingMatlab(V)4010.5FIRDigitalFilterDes4110.5FIRDigitalFilterDesignUsingMatlab(VI)4110.5FIRDigitalFilterDes42WindowingmethodforFIRfilterdesign:fir1()andfir2()Example10.15DesignaFIRlowpassfilterusingakaiserwindowwithspecifications:10.5FIRDigitalFilterDesignUsingMatlab(VI)42WindowingmethodforFIRfil4310.1,10.2,10.3estimationformula10.4multibandfilterimpulseresponse10.5truncationapproximation10.6,10.7idealdigitalHilberttransformation10.8idealdigitaldifferentiator10.9delay-complementarypair10.10,10.11,10.12,10.18inverseDTFT10.15,10.16,10.17windowingmethoddesign10.20fractionaldelayFIRfilter10.21idealcombfilter10.27,10.28differentfittingalgorithm10.29filtersharpening10.31~10.35frequencysamplingmethod10.40WDFT10.36~10.38Parks-McClellanalgorithmweightingfunctionExercises4310.1,10.2,10.3estimat44Introduction
☆
FIRfilter:directdesignofDTfilterwiththeoftenaddedlinear-phaserequirement(1)WindowedFourierseriesapproach(§10.2)(2)Frequencysamplingapproach(Problem10.31,10.32)
(3)Computer-basedoptimizationmethod(§10.3)
Chap.10FIRDigitalFilterDesign1IntroductionChap.10FIRDi4510.1PreliminaryConsiderationsForFIRsystem:realpolynomialapproximationifalinearphaseisdesired
10.1.1BasicApproachestoFIRDigitalFilterDesign210.1PreliminaryConsiderati4610.1.2EstimationoftheFilterOrderKaiser’sFormulaForlowpassFIRfilterdesign:P397-398Bellanger’sFormulaHermann’sFormulaParametersseeP398.310.1.2EstimationoftheFil4710.2DesignofFIRFiltersbyWindowing(P400)
10.2.1LeastIntegral-SquaredErrorDesignofFIRFilters410.2DesignofFIRFiltersb4810.2.2ImpulseResponsesofIdealFiltersIdeallinearphaselowpassfilterIdeallinearphase
highpassfilter510.2.2ImpulseResponsesof49ImpulseResponsesofIdealFilters(II)Ideallinearphasebandpassfilter
Ideallinearphasebandstopfilter
6ImpulseResponsesofIdealFi50ImpulseResponsesofIdealFilters(III)IdealmultibandfilterIdealdiscrete-timeHilberttransformer
Idealdiscrete-timedifferentiator
7ImpulseResponsesofIdealFi51Gibbsphenomenon:
OscillatorybehaviorinthemagnituderesponseofcausalFIRfiltersdesignedutilizingtruncation10.2.3GibbsPhenomenon8Gibbsphenomenon:52mainlobesidelobeMainlobewidth--truncationperiodiccontinuousconvolution=N/210.2.3GibbsPhenomenon(II)9mainlobesidelobeMainlobewidt53-2/(N+1)10-2/(N+1)5410.2.3GibbsPhenomenon(III)1110.2.3GibbsPhenomenon(II55
Noscillatemorerapidly,buttheamplitudesofthelargestripples=constantFor,Nm
,sidelobe,
10.2.3GibbsPhenomenon(IV)(2)Fortheintegral
,oscillationwilloccurateachsidelobeofmovespastthediscontinuity(3)
ThemethodstoreduceGibbsphenomenon:taperingthewindowsmoothlytozeroateachend,butmasmoothtransitioninmagnitudespecifications12Noscillatemorerapi5610.2.4FixedWindowFunctions(1)Hanningwindow:
A=-B=1/2,C=0;Hammingwindow:A=0.54,B=-0.46,C=0Blackmanwindow:A=0.42,B=-0.5,C=0.08.Rectangularwindow:w[n]=u[n]–u[n–
N
–
1]
Hanning,Hamming,Blackman:
Bartlettwindow:triangular1310.2.4FixedWindowFunctio57P406Fig.10.6Commonlyusedfixedwindows10.2.4FixedWindowFunctions(II)N/2NRectangular
Hamming
HanningBartlett
Blackmann
w[n]
114P406Fig.10.6Commonlyu5810.2.4FixedWindowFunctions(III)P407Fig.10.750N1510.2.4FixedWindowFunctio5910.2.4FixedWindowFunctions(IV)Parameterspredictingtheperformanceofawindowmainlobewidth
relativesidelobelevel(dB)Sameripplesinpassbandandstopbandwidthoftransitionband1610.2.4FixedWindowFunctioTypeofwindowRelativeSidelobeLevel(dB)Main-lobewidthMinimumStopbandAttenuation(dB)TransitionBandwidthRect.13.34π/(N+1)20.91.84π/NBartlett26.58π/NHanning31.58π/N43.96.22π/NHamming42.78π/N54.56.64π/NBlackman58.112π/N75.311.12π/N6010.2.4FixedWindowFunctions(V)P408Table10.2’TypeofwindowRelativeSidelob6110.2.4FixedWindowFunctions(VI)ExampletoillustratetheeffectofwindowsN=50P4091810.2.4FixedWindowFunctio6210.2.4FixedWindowFunctions(VII)Computeimpulseresponseofthedesiredfilter(accordingtotheinverseFourierequation)(2)Determinethesuitablewindowbytheminimumstopbandattenuationand(3)DeterminethelengthofFIRbythetransitionwidth(4)ObtainthedesignedFIRfilter:StepsforFIRfilterdesign:1910.2.4FixedWindowFunctio63Example10.6Page410
DesignanFIRlowpassdigitalfilterwithspecifications:theattenuationofthestopbandshouldmorethan40dB;.2)AccordingtoTable10.2,wecouldselectHanning,hamming,Blackmanwindow,thenthebandwidthofthetransition
bandshouldsatisfy(for
Hanning)TypeI:N=32;TypeII:N=3310.2.4FixedWindowFunctions(VIII)1)i.e.Pleaseselectasuitablewindowfunctionanddeterminethesmallestlengthofthewindow.20Example10.6Page410Des6410.2.4FixedWindowFunctionsExampleShowthattheidealhighpasstransformerwithafrequencyresponsedefinedby(1)Determinetheimpulseresponseh[n],therelationofαandN?(2)Whattypeoflinear-phaseFIRfilter?(3)Writetheimpulseresponseh[n]
usingtheHannwindows-basemethod.Solution:2110.2.4FixedWindowFunctio6510.2.4FixedWindowFunctions2210.2.4FixedWindowFunctio6610.2.4FixedWindowFunctions(2)
IfNisevenwhen,thefilterhaslinearphaseisinteger,hd[n]isanti-symmetries,andh[n]=-h[N-n],thefilteristypeIII.IfNisoddisn’tinteger,hd[n]issymmetries,andh[n]=h[N-n],thefilteristypeII.2310.2.4FixedWindowFunctio6710.2.4FixedWindowFunctions(3)2410.2.4FixedWindowFunctio68with
=N/2.
β
controlstheside-lobeamplitudes(attenuation)
controlsthemainlobewidth
Predictionformula:–attenuation
s
=20log10δsβ–transitionregionwidthω=ωsωp
togetherwithattenuation
s
N(10.39’)10.2.5AdjustableWindowFunctions(P410)KaiserwindowN25with=N/2.(10.39’)10.2.569Amplitude0.305101520(10.41)(10.42)10.2.5AdjustableWindowFunctions(II)26Amplitude0.3051015270Kaiserwindowdesignexample(1)DeterminethewindowfunctionKaiserwindow:,Ni.e.,s=0.01,Assume:Question:IsitsuitableforNtobe23?27Kaiserwindowdesignex71Kaiserwindowdesignexample(II)(2)Thedesiredimpulseresponse28Kaiserwindowdesignex72Kaiserwindowdesignexample(III)(3)TheFIRfilterdesignedWhereN=24,=3.395TypeIlinearphaseFIR29Kaiserwindowdesignex7310.3CADofEquirippleLinear-PhaseFIRFiltersApproximationmethods:(2)LeastIntegral-SquaredapproximationWindowedFourierSeriesapproach(1)InterpolationFrequencysamplingapproach(3)ChebyshevapproximationEquirippleapproximationParks-McClellanAlgorithm3010.3CADofEquirippleLine7410.3CADofEquirippleLinear-PhaseFIRFilters(II)Weightederrorfunction:(10.47)or(10.62)(10.68)3110.3CADofEquirippleLine7510.3CADofEquirippleLinear-PhaseFIRFilters(III)ChebyshevorMinimaxcriterion:equirippleFIRfilterMinimizethepeakabsolutevalueofLinear-phaseFIRfiltersobtainedbythecriterionpolynomialapproximation3210.3CADofEquirippleLine7610.3CADofEquirippleLinear-PhaseFIRFilters(IV)AlternationTheorem:LetRbeaunionofdisjointclosedsubsetsofLetadesiredfunctionD(x)andweightingfunctionW(x)becontinuousonRDefinetheerrorfunction
E(x)=W(x)[PL(x)-D(x)]Maximumerror
3310.3CADofEquirippleLine7710.3CADofEquirippleLinear-PhaseFIRFilters(V)necessaryandsufficientconditionforPL(x)beingtheuniqueLthorderpolynomialundertheMinimax
criterioncanbeexpressedbythealternationtheorem:E(x)hasatleastL+2alterationsonF
,i.e.
xi,i=1,...,L’≥L+2suchthatxi
<xi+1,E(xi)=-E(xi+1),fori=1,...,L’-1andE(xi)
=±Emax,fori=1,...,L’3410.3CADofEquirippleLine7810.3CADofEquirippleLinear-PhaseFIRFilters(VI)Parks-McClellanAlgorithmIterativemethodtodeterminethealternationfrequenciesωi
andtheripple
1.initialize
ωi
to
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽省宿州市汴北三校联考高三2月份物理试题模拟试题含解析
- 贵州航空职业技术学院《金融大数据技术及应用》2023-2024学年第二学期期末试卷
- 广东舞蹈戏剧职业学院《电子商务创业学》2023-2024学年第二学期期末试卷
- 绥化学院《苗族文化与医药史》2023-2024学年第二学期期末试卷
- 2024-2025学年广东省深圳市普通高中高三下期中考试(数学试题理)试题含解析
- 武汉科技职业学院《设计与应用》2023-2024学年第二学期期末试卷
- 昆明市第二中学2025届高三第三次调研考试语文试题含解析
- 公司、项目部、各个班组安全培训试题附答案【综合题】
- 公司安全管理员安全培训试题带答案(培优)
- 斜屋面防水施工方案
- 【失败案例】大树网-传统企业的转型之思(市场评估不足盲目扩张)
- 【企业薪酬体系管理研究国内外文献综述】
- 探究凸透镜成像规律flash动画课件
- 浙江大学C语言上机考试题库
- Unit 5 Poems Workbook Exploring poetry in China 课件-高中英语人教版(2019)选择性必修第三册
- 2023-2024年全国卷英语双向细目表
- 《内蒙古赤峰市三座店水利枢纽工程渗漏处理方案》技术审查意见
- 陶艺身边的艺术幼儿陶艺课模板
- GB/T 28035-2011软件系统验收规范
- 道路货物运输及站场管理规定
- 癫痫外科术前评估进展课件
评论
0/150
提交评论