




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chap4DigitalProcessingofCTSignalsDiscrete-TimeSignalProcessingofCTS;SamplingofCTSignals;AnalogLowpassFilterDesign;1Chap4DigitalProcessingofMostsignalsintherealworldarecontinuousintime;4.1IntroductionDTsignalprocessingalgorithmsarebeingusedincreasingly;DigitalprocessingofaCTsignalinvolves3basicsteps:SampleaCTsignalintoaDTsignal;
(analog-to-digital(A/D)
converter)ProcesstheDTsignal(binaryword);ConverttheprocessedDTsignalbackintoCTsignal.
(digital-to-analog(D/A)
converter)2MostsignalsintherealworSimplifiedBlockdiagramofaCTsignalprocessedbyDTsystemSincetheA/Dconversionusuallytakesafiniteamountoftime,asample-and-holdcircuitisusedtoensurethattheanalogsignalattheinputoftheA/Dconverterremainsconstantinamplitudeuntiltheconversioniscompletetominimizetheerrorinitsrepresentation;
C/DConverterDiscrete-TimeProcessor
D/CConverterFig.4.2BlockdiagramofCTsignalprocessedbyDTsystem3SimplifiedBlockdiagramof
OtheradditionalcircuitsTopreventaliasing,ananaloganti-aliasingfilterisemployedbeforetheS/Hcircuit;TosmooththeoutputsignaloftheD/Aconverter,whichisastaircase-likewaveform,ananalogreconstructionfilterisused.SampleandholdDigitalSystemD/A
Anti-aliasingfilterA/DcompensatedreconstructionfilterFig.4.1CompletedblockdiagramrepresentationofaCTsignalprocessedbyDTsystem4OtheradditionalcircuitsToNormalizeddigitalangularfrequencyExample
:Normalizeddigitalangularfrequency0:ThesampledDTsignal:CTsignal:5NormalizeddigitalangularfEffectofsamplingintheFrequency-DomainSupposeacontinuous-timesignal:
ga(t)Samplingsequence:
g
[n]
samplingperiod:
T
;
samplingfrequency:FT=1/T
CTFTGa(j)ofsignal
ga(t)is:6EffectofsamplingintheFreq
EffectofsamplingintheFrequency-DomainTheDTFTG(ej)ofasequenceg[n]isgivenbyRelationbetweenG(ej)andGa(j)
Conversionfromimpulsetraintodiscrete-timesequencega(t)gp(t)p(t)g[n]=ga(nT)PeriodsamplinginMathematics7EffectofsamplingintheFre
PeriodsamplinginMathematics8PeriodsamplinginMathematiCTFTGp(j)ofgp(t)
AccordingtothedefinitionofCTFTAccordingtothemodulationtheoremofCTFT9CTFTGp(j)ofgp(t)Accord
Effectofsamplinginthefrequency-domain
Gp(j)isaperiodicfunctionoffrequencyconsistingofasumofshiftedandscaledreplicasofGa(j),
shiftedbyintegerof
Tandscaledby1/T.Basebandsignal:
thetermontheright-handsideofEq.(4.16)for
k=0iscalledbasebandportionofGp(j).Baseband/Nyquistband:frequencyrange
T/2<T/210EffectofsamplinginthefreIllustrationofthefrequency-domainEffectsoftime-domainsamplingNooverlap11Illustrationofthefrequency
EffectofsamplingintheFrequency-DomainItisevidentfromthefigurethatifT2m,thereisnooverlapbetweentheshiftedreplicasof
Ga(j)generating
Gp(j).
IfT
2m
,ga(t)
canberecoveredexactly
fromgp(t)by
passingifthroughan
ideallowpassfilter
Hr(j)
with
gain
T
anda
cutofffrequency
c
greaterthanm
andlessthanTm
.
12EffectofsamplingintheFre
Hr(j)ga(t)gp(t)p(t)ga(t)
EffectofsamplingintheFrequency-Domain13Hr(j)ga(t)gp(t)p(t)ga(t)Illustrationofthefrequency-domaineffectsoftime-domainsamplingOverlap14Illustrationofthefrequency
EffectofsamplingintheFrequency-DomainOntheotherhand,ifT<2m,thereisanoverlap
ofthespectraoftheshiftedreplicasofGa(j)
generating
Gp(j).
IfT
<2m
,duetotheoverlap
oftheshiftedreplicas
of
Ga(j),thespectrumGp(j)
cannotbeseparatedbyfilteringtorecover
Ga(j)
becauseofthedistortioncausedbyapartofreplicasimmediatelyoutsidethebasebandbeing
foldedBackor
aliasedintothebaseband.15EffectofsamplingintheFreSamplingTheoremSupposethat
ga(t)beaband-limitedsignalwiththenga(t)isuniquelydeterminedbyitssamplesg[n]=ga(nT),n=0,±1,±2,···,if
Nyquistconditions:
Foldingfrequency:16SamplingTheoremSupposethatSamplingTheorem
NyquistFrequency:
m
Nyquistrate:2mAndthenpassingifthroughanideallowpassfilter
Hr(j)
withagain
Tandacutofffrequency
c
satisfyingGiven{g[n]=ga(nT)
},wecanrecoverexactlyga(t)bygeneratinganimpulsetrain,17SamplingTheoremNyquistFrSeveralSamplingOversampling:Thesamplingfrequencyishigher
thantheNyquistrateUndersampling:Thesamplingfrequencyislower
thantheNyquistrateCriticalsampling:ThesamplingfrequencyisequaltotheNyquistrateNote:Apuresinusoidmaynotberecoverablefromitscriticallysampledversion.18SeveralSamplingOversamplinExamplesofsamplingIndigitaltelephony,a3.4kHzsignalbandwidthisadequatefortelephoneconversation;Hence,asamplingrateof8kHz,whichisgreaterthantwicethesignalbandwidth,isused.Inhigh-qualityanalogmusicsignalprocessing,abandwidthof20kHzisusedforfidelity;Hence,inCDmusicsystems,asamplingrateof44.1kHz,whichisslightlyhigherthantwicethesignalbandwidth,isused.19ExamplesofsamplingIndigi
ExamplesofsamplingExample4.3Consider3CTsinusoidalsignals:ThecorrespondingDTFTsare:TheyaresampledatarateofT=0.1sec,orsamplingfrequencyT=20rad/sec.20ExamplesofsamplingExample4TheCTFTofthethreesignals:TheCTFTofthethreesignalTheCTFTofthesampledimpulsetrains:TheCTFTofthesampledimp
Commentsonexample4.3Inthecaseofg1(t),thesamplingratesatisfiestheNyquistconditionandthereisnoaliasing;ThereconstructedoutputispreciselytheoriginalCTsignalg1(t);Intheothertwocases,thesamplingratedoesnotsatisfytheNyquistcondition,resultinginaliasing,andoutputssreallequaltothealiasedsignalg1(t)=cos(6t);23Commentsonexample4.3InInthefigureofG2p(j),theimpulseappearingat
=6inthepositivefrequencypassbandofthelowpassfilterresultsfromthealiasingoftheimpulseinG2(j)at=14;InthefigureofG3p(j),theimpulseappearingat
=6inthepositivefrequencypassbandofthelowpassfilterresultsfromthealiasingoftheimpulseinG3(j)at=26;
Commentsonexample4.324InthefigureofG2p(j),thRelationbetweenG(ej)andGa(j)Since:therefore:or:25RelationbetweenG(ej)andSoorG(ej)isobtainedfromGp(j)simplybyscalingaccordingtotherelationRelationbetweenG(ej)andGa(j)26SoorG(ej)isobtainedfromGRecoveryoftheAnalogSignalSampleandholdDigitalSystemD/A
Anti-aliasingfilterA/DcompensatedreconstructionfilterFig.4.1DetailedblockdiagramrepresentationofaCTsignalprocessedbyDTsystemThelowpassreconstructionfilterHr(j):TheinputtoHr(j)isimpulsetraingp(t);
27RecoveryoftheAnalogSignalSTheimpulseresponsehr(t)ofthelowpassreconstructionfilterisobtainedbytakingtheinverseCTFTofHr(j):RecoveryoftheAnalogSignal28Theimpulseresponsehr(t)oTheoutputofHr(j)isgivenbyga(t)ga(t)Withassuming:c=T/2=/T.RecoveryoftheAnalogSignal29TheoutputofHr(j)4.3SamplingofBandpassSignalsBandpassCTSignalBandwidth:=HL;Assuming:H=M•(),Misaninteger;Samplingrate:T=2()=2H/M;CTFTofthesampledimpulsetrain:304.3SamplingofBandpassSigIllustrationofBandpassSamplingT=2()NoaliasingBandpassfilterRecoverthebandpasssignal31IllustrationofBandpassSamp
FrequencytranslationFrequencytranslation:Anyofthereplicasinthelowerfrequencybandscanberetainedbypassinggp(t)throughbandpassfilterswithpassbands:providingatranslationoftheoriginalbandpasssignaltolowerfrequencyranges.32FrequencytranslationFreque4.4AnalogLowpassFilterDesignFilterSpecification
:Passband:Stopband:Passbandedgefrequency:p;Stopbandedgefrequency:s.334.4AnalogLowpassFilterDeFrequency-DomainCharacterizationoftheLTIDTSystemPeakpassbandripple:
p=20log10(1p)
dB(4.35)Minimumstopbandattentuation:
s=20log10(s)
dB(4.36)RipplesareusuallyspecifiedindBas:Peakripplevalueinthepassband:p;Peakripplevalueinthestopband
:s.34Frequency-DomainCharacterizatNormalizedspecificationsforanaloglowpassfilterThemaximumvalueofthemagnitudeinthepassbandisassumedtobeunity(1);Passbandripple:ThemaximumvalueofthemagnitudeinthepassbandMaximumstopbandripple:35NormalizedspecificationsfoTwoadditionalparametersTransitionratio/selectivityparameter:
k<1forlowpassfilterDiscriminationparameter:usually,36TwoadditionalparametersTButterworthApproximationN-thorderbutterworthfilter:alsocalledamaximallyflatmagnitudefilterGainindB:Atdc,i.e.,
=0:At
=c:c3dBcutofffrequency.37ButterworthApproximationN-tTypicalmagnituderesponsewithc=1Twoparameters:the3-dBcutofffrequency
c
andtheorderN
completelycharacterizeaButterworthfilter.candNaredeterminedfrom:p,,s,1/A.38Typicalmagnituderesponsew
ObtaincandN
Solvetheequationsof(4.40)39ObtaincandNSolvetheeqTransferfunctionofButterworthlowpassfilterwhereThedenominatorDN(s)isknownastheButterworthpolynomialoforderN.40TransferfunctionofButterwoExampleanaloglowpassButterworthFilterExample4.8DeterminethelowestorderofatransferfunctionHa(s)havingamaximallyflatcharacteristicwitha1-dBcutofffrequencyat1kHzandaminimumattenuationof40dBat5kHz.Solution:Obtain:41ExampleanaloglowpassButterObtainA:OrderN:LetNbetheminimuminteger,soN=4.ObtainA:OrderN:LetNbetChebyshevApproximationType1ChebyshevApproximation
:ChebyshevpolynomialoforderN:orrecurrencerelationofChebyshevpolynomial:43ChebyshevApproximationType1TypicalType1Chebyshevlowpassfilterpassbandripple:stopbandattenuation:
1/Aats44TypicalType1Chebyshevlow
ObtainNandtransferfunctionPolepl
oftransferfunctionHa(s)
45ObtainNandtransferfuncti
ObtaintransferfunctionChebyshevIfiltertransferfunction:46ObtaintransferfunctionCheType2ChebyshevApproximationType2ChebyshevApproximation
:(4.52)47Type2ChebyshevApproximationExampleofChebyshevIIlowpassFilterExample4.9DeterminetheminimumorderNrequiredtodesignalowpassfilterwithatype1Chebyshevortype2Chebyshev(specifications:a1-dBcutofffrequencyat1kHzandaminimumattenuationof40dBat5kHz).Solution:Obtain:48ExampleofChebyshevIIlowpaObtainA:OrderN:LetNbetheminimuminteger,soN=3.Note:
ChebyshevorderislowerthanButterworthorder.ObtainA:OrderN:LetNbet4.5DesignofothertypeanalogfiltersSpectraltransformationmethodisusedtodesignothertypesoffilters;Stepsfordesignothertypesoffilters;Step1:DevelopthespecificationsofaprototypeanaloglowpassfilterHLP(s)
fromthespecificationsoftheDesiredanalogfilterHD(s)
usingfrequencytransformation;Step2:Designtheprototypeanaloglowpassfilter;Step3:DeterminethetransferfunctionHD(s)
ofthedesiredanalogfilterbyapplyingtheinverseoffrequencytransformationtoHLP(s).504.5Designofothertypeana
MarksoftheprototypeanddesiredfiltersToeliminatetheconfusion,Sign:theprototypeanaloglowpassfilter:HLP(s)
Laplacetransformvariables
thedesiredanalogfilter:HD(s)
Laplacetransformvariable
sTransformbetweenHLP(s)andHD(s)
or51MarksoftheprototypeanddethepassbandedgefrequencyofdesiredanaloghighpassfilterHHP(s).
TransformationtotheHighpassFilterwherethepassbandedgefrequencyofprototypeanaloglowpassfilterHLP(s);
Ontheimaginaryaxis,52thepassbandedgefrequenMappingofimaginaryaxisins-domainto-domainsLowpassfilterpassbandHIghpassfilterpassband53MappingofimaginaryaxisinsExampleofHighpassfilterdesignExample4.18DesignananalogButterworthhighpassfilter,withspecifications:Solution:Passbandedgefrequency:4kHz,passbandripple:0.1dB;Stopbandedgefrequency:1kHz,stopbandattenuation:40dB;Forprototypelowpassfilter,let54ExampleofHighpassfilterdeExample4.18Stopbandedgefrequency:Specificationsforprototypelowpassfilter:p=1,p
=0.1dB;s=4,s
=40dB;MATLABcodefragments:55Example4.18StopbandedgefMATLABcodes[N,wn]=buttord(wp,ws,afap,afas,‘s’);[B,A]=butter(N.wn,’s’);[num,den]=lp2hp(B,A,2*pi*4000);56MATLABcodes[N,wn]=buttord4.6Anti-AliasingFilterdesignAnti-aliasingfilter=analoglowpassfilter;Requirementforanti-aliasingfilter:Idealanti-aliasingfilter574.6Anti-AliasingFilterdesAnti-AliasingFilterdesignSpectrumofaliasedcomponentofinput58Anti-AliasingFilterdesignS4.7ReconstructionFilterdesignReconstructionfilter=analoglowpassfilter;Idealreconstructionfilterisnoncausalandunrealizable:Idealreconstructionfilter594.7ReconstructionFilterde4.7ReconstructionFilterdesignzero-orderholdfrequencyresponse;Reconstructionfilterwhere604.7ReconstructionFilterdeSummary(I)DTSPofCTS;SamplingofCTSignals;61Summary(I)DTSPofCTS;SSummary(II)AnalogLowpassFilterDesignPassbandedgefrequencypandripplep;Stopbandedgefrequencys
andripples.Peakpassbandripple:
p=20log10(1p)
dB(4.35)Minimumstopbandattentuation:
s=20log10(s)
dB(4.36)62Summary(II)AnalogLowpassN-thorderButterworthfilter:N-thorderButterworthfilterExercisesPage166:4.3,4.7Page167:4.12(*);4.16;4.2364ExercisesPage166:Page167:6Chap4DigitalProcessingofCTSignalsDiscrete-TimeSignalProcessingofCTS;SamplingofCTSignals;AnalogLowpassFilterDesign;65Chap4DigitalProcessingofMostsignalsintherealworldarecontinuousintime;4.1IntroductionDTsignalprocessingalgorithmsarebeingusedincreasingly;DigitalprocessingofaCTsignalinvolves3basicsteps:SampleaCTsignalintoaDTsignal;
(analog-to-digital(A/D)
converter)ProcesstheDTsignal(binaryword);ConverttheprocessedDTsignalbackintoCTsignal.
(digital-to-analog(D/A)
converter)66MostsignalsintherealworSimplifiedBlockdiagramofaCTsignalprocessedbyDTsystemSincetheA/Dconversionusuallytakesafiniteamountoftime,asample-and-holdcircuitisusedtoensurethattheanalogsignalattheinputoftheA/Dconverterremainsconstantinamplitudeuntiltheconversioniscompletetominimizetheerrorinitsrepresentation;
C/DConverterDiscrete-TimeProcessor
D/CConverterFig.4.2BlockdiagramofCTsignalprocessedbyDTsystem67SimplifiedBlockdiagramof
OtheradditionalcircuitsTopreventaliasing,ananaloganti-aliasingfilterisemployedbeforetheS/Hcircuit;TosmooththeoutputsignaloftheD/Aconverter,whichisastaircase-likewaveform,ananalogreconstructionfilterisused.SampleandholdDigitalSystemD/A
Anti-aliasingfilterA/DcompensatedreconstructionfilterFig.4.1CompletedblockdiagramrepresentationofaCTsignalprocessedbyDTsystem68OtheradditionalcircuitsToNormalizeddigitalangularfrequencyExample
:Normalizeddigitalangularfrequency0:ThesampledDTsignal:CTsignal:69NormalizeddigitalangularfEffectofsamplingintheFrequency-DomainSupposeacontinuous-timesignal:
ga(t)Samplingsequence:
g
[n]
samplingperiod:
T
;
samplingfrequency:FT=1/T
CTFTGa(j)ofsignal
ga(t)is:70EffectofsamplingintheFreq
EffectofsamplingintheFrequency-DomainTheDTFTG(ej)ofasequenceg[n]isgivenbyRelationbetweenG(ej)andGa(j)
Conversionfromimpulsetraintodiscrete-timesequencega(t)gp(t)p(t)g[n]=ga(nT)PeriodsamplinginMathematics71EffectofsamplingintheFre
PeriodsamplinginMathematics72PeriodsamplinginMathematiCTFTGp(j)ofgp(t)
AccordingtothedefinitionofCTFTAccordingtothemodulationtheoremofCTFT73CTFTGp(j)ofgp(t)Accord
Effectofsamplinginthefrequency-domain
Gp(j)isaperiodicfunctionoffrequencyconsistingofasumofshiftedandscaledreplicasofGa(j),
shiftedbyintegerof
Tandscaledby1/T.Basebandsignal:
thetermontheright-handsideofEq.(4.16)for
k=0iscalledbasebandportionofGp(j).Baseband/Nyquistband:frequencyrange
T/2<T/274EffectofsamplinginthefreIllustrationofthefrequency-domainEffectsoftime-domainsamplingNooverlap75Illustrationofthefrequency
EffectofsamplingintheFrequency-DomainItisevidentfromthefigurethatifT2m,thereisnooverlapbetweentheshiftedreplicasof
Ga(j)generating
Gp(j).
IfT
2m
,ga(t)
canberecoveredexactly
fromgp(t)by
passingifthroughan
ideallowpassfilter
Hr(j)
with
gain
T
anda
cutofffrequency
c
greaterthanm
andlessthanTm
.
76EffectofsamplingintheFre
Hr(j)ga(t)gp(t)p(t)ga(t)
EffectofsamplingintheFrequency-Domain77Hr(j)ga(t)gp(t)p(t)ga(t)Illustrationofthefrequency-domaineffectsoftime-domainsamplingOverlap78Illustrationofthefrequency
EffectofsamplingintheFrequency-DomainOntheotherhand,ifT<2m,thereisanoverlap
ofthespectraoftheshiftedreplicasofGa(j)
generating
Gp(j).
IfT
<2m
,duetotheoverlap
oftheshiftedreplicas
of
Ga(j),thespectrumGp(j)
cannotbeseparatedbyfilteringtorecover
Ga(j)
becauseofthedistortioncausedbyapartofreplicasimmediatelyoutsidethebasebandbeing
foldedBackor
aliasedintothebaseband.79EffectofsamplingintheFreSamplingTheoremSupposethat
ga(t)beaband-limitedsignalwiththenga(t)isuniquelydeterminedbyitssamplesg[n]=ga(nT),n=0,±1,±2,···,if
Nyquistconditions:
Foldingfrequency:80SamplingTheoremSupposethatSamplingTheorem
NyquistFrequency:
m
Nyquistrate:2mAndthenpassingifthroughanideallowpassfilter
Hr(j)
withagain
Tandacutofffrequency
c
satisfyingGiven{g[n]=ga(nT)
},wecanrecoverexactlyga(t)bygeneratinganimpulsetrain,81SamplingTheoremNyquistFrSeveralSamplingOversampling:Thesamplingfrequencyishigher
thantheNyquistrateUndersampling:Thesamplingfrequencyislower
thantheNyquistrateCriticalsampling:ThesamplingfrequencyisequaltotheNyquistrateNote:Apuresinusoidmaynotberecoverablefromitscriticallysampledversion.82SeveralSamplingOversamplinExamplesofsamplingIndigitaltelephony,a3.4kHzsignalbandwidthisadequatefortelephoneconversation;Hence,asamplingrateof8kHz,whichisgreaterthantwicethesignalbandwidth,isused.Inhigh-qualityanalogmusicsignalprocessing,abandwidthof20kHzisusedforfidelity;Hence,inCDmusicsystems,asamplingrateof44.1kHz,whichisslightlyhigherthantwicethesignalbandwidth,isused.83ExamplesofsamplingIndigi
ExamplesofsamplingExample4.3Consider3CTsinusoidalsignals:ThecorrespondingDTFTsare:TheyaresampledatarateofT=0.1sec,orsamplingfrequencyT=20rad/sec.84ExamplesofsamplingExample4TheCTFTofthethreesignals:TheCTFTofthethreesignalTheCTFTofthesampledimpulsetrains:TheCTFTofthesampledimp
Commentsonexample4.3Inthecaseofg1(t),thesamplingratesatisfiestheNyquistconditionandthereisnoaliasing;ThereconstructedoutputispreciselytheoriginalCTsignalg1(t);Intheothertwocases,thesamplingratedoesnotsatisfytheNyquistcondition,resultinginaliasing,andoutputssreallequaltothealiasedsignalg1(t)=cos(6t);87Commentsonexample4.3InInthefigureofG2p(j),theimpulseappearingat
=6inthepositivefrequencypassbandofthelowpassfilterresultsfromthealiasingoftheimpulseinG2(j)at=14;InthefigureofG3p(j),theimpulseappearingat
=6inthepositivefrequencypassbandofthelowpassfilterresultsfromthealiasingoftheimpulseinG3(j)at=26;
Commentsonexample4.388InthefigureofG2p(j),thRelationbetweenG(ej)andGa(j)Since:therefore:or:89RelationbetweenG(ej)andSoorG(ej)isobtainedfromGp(j)simplybyscalingaccordingtotherelationRelationbetweenG(ej)andGa(j)90SoorG(ej)isobtainedfromGRecoveryoftheAnalogSignalSampleandholdDigitalSystemD/A
Anti-aliasingfilterA/DcompensatedreconstructionfilterFig.4.1DetailedblockdiagramrepresentationofaCTsignalprocessedbyDTsystemThelowpassreconstructionfilterHr(j):TheinputtoHr(j)isimpulsetraingp(t);
91RecoveryoftheAnalogSignalSTheimpulseresponsehr(t)ofthelowpassreconstructionfilterisobtainedbytakingtheinverseCTFTofHr(j):RecoveryoftheAnalogSignal92Theimpulseresponsehr(t)oTheoutputofHr(j)isgivenbyga(t)ga(t)Withassuming:c=T/2=/T.RecoveryoftheAnalogSignal93TheoutputofHr(j)4.3SamplingofBandpassSignalsBandpassCTSignalBandwidth:=HL;Assuming:H=M•(),Misaninteger;Samplingrate:T=2()=2H/M;CTFTofthesampledimpulsetrain:944.3SamplingofBandpassSigIllustrationofBandpassSamplingT=2()NoaliasingBandpassfilterRecoverthebandpasssignal95IllustrationofBandpassSamp
FrequencytranslationFrequencytranslation:Anyofthereplicasinthelowerfrequencybandscanberetainedbypassinggp(t)throughbandpassfilterswithpassbands:providingatranslationoftheoriginalbandpasssignaltolowerfrequencyranges.96FrequencytranslationFreque4.4AnalogLowpassFilterDesignFilterSpecification
:Passband:Stopband:Passbandedgefrequency:p;Stopbandedgefrequency:s.974.4AnalogLowpassFilterDeFrequency-DomainCharacterizationoftheLTIDTSystemPeakpassbandripple:
p=20log10(1p)
dB(4.35)Minimumstopbandattentuation:
s=20log10(s)
dB(4.36)RipplesareusuallyspecifiedindBas:Peakripplevalueinthepassband:p;Peakripplevalueinthestopband
:s.98Frequency-DomainCharacterizatNormalizedspecificationsforanaloglowpassfilterThemaximumvalueofthemagnitudeinthepassbandisassumedtobeunity(1);Passbandripple:ThemaximumvalueofthemagnitudeinthepassbandMaximumstopbandripple:99NormalizedspecificationsfoTwoadditionalparametersTransitionratio/selectivityparameter:
k<1forlowpassfilterDiscriminationparameter:usually,100TwoadditionalparametersTButterworthApproximationN-thorderbutterworthfilter:alsocalledamaximallyflatmagnitudefilterGainindB:Atdc,i.e.,
=0:At
=c:c3dBcutofffrequency.101ButterworthApproximationN-tTypicalmagnituderesponsewithc=1Twoparameters:the3-dBcutofffrequency
c
andtheorderN
completelycharacterizeaButterworthfilter.candNaredeterminedfrom:p,,s,1/A.102Typicalmagnituderesponsew
ObtaincandN
Solvetheequationsof(4.40)103ObtaincandNSolvetheeqTransferfunctionofButterworthlowpassfilterwhereThedenominatorDN(s)isknownastheButterworthpolynomialoforderN.104TransferfunctionofButterwoExampleanaloglowpassButterworthFilterExample4.8DeterminethelowestorderofatransferfunctionHa(s)havingamaximallyflatcharacteristicwitha1-dBcutofffrequencyat1kHzandaminimumattenuationof40dBat5kHz.Solution:Obtain:105ExampleanaloglowpassButterObtainA:OrderN:LetNbetheminimuminteger,soN=4.ObtainA:OrderN:LetNbetChebyshevApproximationTy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粉末冶金在船舶推进器制造中的应用考核试卷
- 煤制液体燃料的原料煤选择与处理考核试卷
- 畜牧良种繁殖与新型农业经营主体培育考核试卷
- 2025电视剧拍摄场地租赁合同模板
- 2025茶叶代销合同模板
- 2025建筑工程分包合同样本
- 三级心理咨询师考培训分享
- 苏教版七年级上册语文全册教案2
- 国际贸易合同书文本
- 二零二五办公室文员聘用合同书
- 精美乒乓球运动活动策划方案PPT
- GB/T 18050-2000潜油电泵电缆试验方法
- GB 7793-2010中小学校教室采光和照明卫生标准
- FZ/T 24011-2019羊绒机织围巾、披肩
- 金螳螂企业管理课件
- 炊事机械安全操作规程
- 最新版教育心理学课件3-成就动机
- 离合器-汽车毕业设计-设计说明书
- 中国民间美术年画-完整版PPT
- 2022年《趣味接力跑》教案
- 级配碎石旁站监理记录表.模板
评论
0/150
提交评论