




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
激光原理及其应用(课件)Laseranditsapplications激光原理及其应用(课件)Laseranditsapp1LaseranditsapplicationsChapter(1):TheoryofLasing(2)
Chapter(2):Characteristicsoflaserbeam()
Chapter(3):Typesoflasersources()Chapter(4):Laserapplications()
ContentspageLaseranditsapplications2Chapter(1)TheoryofLasing1.Introduction(Briefhistoryoflaser)
Thelaserisperhapsthemostimportantopticaldevicetobedevelopedinthepast50years.Sinceitsarrivalinthe1960s,ratherquietandunheraldedoutsidethescientificcommunity,ithasprovidedthestimulustomakeopticsoneofthemostrapidlygrowingfieldsinscienceandtechnology
today.Chapter(1)TheoryofLasing1.3激光原理及其应用(课件-laser-and-its-applications教学讲义4激光原理及其应用(课件-laser-and-its-applications教学讲义5激光原理及其应用(课件-laser-and-its-applications教学讲义6
BeforeAfter
(i)Stimulatedabsorption
ii)Spontaneousemission
)(iii)StimulatedemissionBefore7)ii)Spontaneousemission
Consideranatom(ormolecule)ofthematerialisexistedinitiallyinanexcitedstateE2Noexternalradiationisrequiredtoinitiatetheemission.SinceE2>E1,theatomwilltendtospontaneouslydecaytothegroundstateE1,aphotonofenergyh
=E2-E1isreleasedinarandomdirectionasshownin(Fig.1-ii).Thisprocessiscalled“spontaneousemission”Notethat;whenthereleaseenergydifference(E2-E1)isdeliveredintheformofane.mwave,theprocesscalled"radiativeemission"whichisoneofthetwopossibleways“non-radiative”decayisoccurredwhentheenergydifference(E2-E1)isdeliveredinsomeformotherthane.mradiation(e.g.itmaytransfertokineticenergyofthesurrounding))ii)Spontaneousemission8(iii)Stimulatedemission
Quitebycontrast“stimulatedemission”(Fig.1-iii)requiresthepresenceofexternalradiationwhenanincidentphotonofenergyh
=E2-E1passesbyanatominanexcitedstateE2,itstimulatestheatomtodropordecaytothelowerstateE1.Inthisprocess,theatomreleasesaphotonofthesameenergy,direction,phaseandpolarizationasthatofthephotonpassingby,theneteffectistwoidenticalphotons(2h)intheplaceofone,oranincreaseintheintensityoftheincidentbeam.Itispreciselythisprocessesofstimulatedemissionthatmakespossibletheamplificationoflightinlasers.(iii)Stimulatedemission9GrowthofLaserBeam
Atomsexistmostofthetimeinoneofanumberofcertaincharacteristicenergylevels.Theenergylevelorenergystateofanatomisaresultoftheenergyleveloftheindividualelectronsofthatparticularatom.Inanygroupofatoms,thermalmotionoragitationcausesaconstantmotionoftheatomsbetweenlowandhighenergylevels.IntheabsenceofanyappliedelectromagneticradiationthedistributionoftheatomsintheirvariousallowedstatesisgovernedbyBoltzman’slawwhichstatesthat:Thetheoryoflasing
GrowthofLaserBeamA10
ifanassemblageofatomsisinstateofthermalequilibriumatanabsolutetemp.T,thenumberofatomsN2inoneenergylevelE2isrelatedtothenumberN1inanotherenergylevelE1bytheequation.WhereE2>E1clearlyN2<N1
KBoltzmann’sconstant=1.38x10-16erg/degree=1.38x10-23j/KTtheabsolutetemp.indegreesKelvinifanassemblageofatom11
Atabsolutezeroallatomswillbeinthegroundstate.Thereissuchalackofthermalmotionamongtheelectronsthattherearenoatomsinhigherenergylevels.Asthetemperatureincreasesatomschangerandomlyfromlowtotheheightenergystatesandbackagain.Theatomsareraisedtohighenergystatesbychanceelectroncollisionandtheyreturntothelowenergystatebytheirnaturaltendencytoseekthelowestenergylevel.Whentheyreturntothelowerenergystateelectromagneticradiationisemitted.Thisisspontaneousemissionofradiationandbecauseofitsrandomnature,itisincoherentAtabsolutezeroalla12
Asindicatedbytheequation,thenumberofatomsdecreasesastheenergylevelincreases.Asthetempincreases,moreatomswillattainhigherenergylevels.However,thelowerenergylevelswillbestillmorepopulated.Einsteinin1917firstintroducedtheconceptofstimulatedorinducedemissionofradiationbyatomicsystems.Heshowedthatinordertodescribecompletelytheinteractionofmatterandradiative,itisnecessarytoincludethatprocessinwhichanexcitedatommaybeinducedbythepresenceofradiationemitaphotonanddecaytolowerenergystate.Asindicatedbythee13
AnatominlevelE2candecaytolevelE1byemissionofphoton.LetuscallA21thetransitionprobabilityperunittimeforspontaneousemissionfromlevelE2tolevelE1.ThenthenumberofspontaneousdecayspersecondisN2A21,i.e.thenumberofspontaneousdecayspersecond=N2A21.Inadditiontothesespontaneoustransitions,therewillinducedorstimulatedtransitions.Thetotalratetotheseinducedtransitionsbetweenlevel2andlevel1isproportionaltothedensity(U)ofradiationoffrequency,where
=(E2-E1)/h,hPlanck'sconst.AnatominlevelE2c14
LetB21andB12denotetheproportionalityconstantsforstimulatedemissionandabsorption.Thennumberofstimulateddownwardtransitioninstimulatedemissionpersecond=N2
B21
U
similarly,thenumberofstimulatedupwardtransitionspersecond=N1
B12U
TheproportionalityconstantsAandBareknownastheEinsteinAandBcoefficients.Underequilibriumconditionswehave
LetB21andB12denote15bysolvingforU(densityoftheradiation)weobtainU[N1
B12-N2
B21]=A21
N2N2A21+N2B21U=N1B12USP
ST
Ab
bysolvingforU(densityof16AccordingtoPlanck’sformulaofradiation
)2))1)AccordingtoPlanck’sformula17fromequations1and2wehave
B12=B21
(3)equation3and4areEinstein’srelations.Thusforatomsinequilibriumwiththermalradiation.)4(
fromequation2and4
fromequations1and2wehave18(5)Accordingly,therateofinducedemissionisextremelysmallinthevisibleregionofthespectrumwithordinaryopticalsources(T103K.((5)Accordingly,therateofin19
Henceinsuchsources,mostoftheradiationisemittedthroughspontaneoustransitions.Sincethesetransitionsoccurinarandommanner,ordinarysourcesofvisibleradiationareincoherent.Ontheotherhand,inalasertheinducedtransitionsbecomecompletelydominant.Oneresultisthattheemittedradiationishighlycoherent.Anotheristhatthespectralintensityattheoperatingfrequencyofthelaserismuchgreaterthanthespectralintensitiesofordinarylightsources.
Henceinsuchsources20
AmplificationinaMedium
Consideranopticalmediumthroughwhichradiationispassing.SupposethatthemediumcontainsatomsinvariousenergylevelsE1,E2,E3,….letusfittourattentiontotwolevelsE1&E2whereE2>E1wehavealreadyseenthattherateofstimulatedemissionandabsorptioninvolvingthesetwolevelsareproportionaltoN2B21&N1B12respectively.SinceB21=B12,therateofstimulateddownwardtransitionswillexceedthatoftheupwardtransitionswhenN2>N1,.i.ethepopulationoftheupperstateisgreaterthanthatofthelowerstatesuchaconditioniscondrarytothethermalequilibriumdistributiongivenbyBoltzmann’slow.Itistermedapopulationinversion.Ifapopulationinversionexist,thenalightbeamwillincreaseinintensityi.e.itwillbeamplifiedasitpassesthroughthemedium.Thisisbecausethegainduetotheinducedemissionexceedsthelossduetoabsorption.AmplificationinaMedium21givestherateofgrowthofthebeamintensityinthedirectionofpropagation,anisthegainconstantatfrequency
givestherateofgrowthofth22QuantitativeAmplificationoflight
Inordertodeterminequantitativelytheamountofamplificationinamediumweconsideraparallelbeamoflightthatpropagatethroughamediumenjoyingpopulationinversion.Foracollimatedbeam,thespectralenergydensityUisrelatedtotheintensityinthefrequencyinterval
to
+bytheformula.QuantitativeAmplificationof23
DuetotheDopplereffectandotherline-broadeningeffectsnotalltheatomsinagivenenergylevelareeffectiveforemissionorabsorptioninaspecifiedfrequencyinterval.Onlyacertainnumber
N1oftheN1atomsatlevel1areavailableforabsorption.SimilarlyoftheN2atomsinlevel2,thenumber
N2areavailableforemission.Consequently,therateofupwardtransitionsisgivenby:DuetotheDopplereffecta24andtherateofstimulatedorinduceddownwardtransitionsisgivenby:
Noweachupwardtransitionsubtractsaquantumenergyhfromthebeam.Similarly,eachdownwardtransitionaddsthesameamountthereforethenettimerateofchangeofthespectralenergydensityintheinterval
isgivenby
where(h
B
NU)=therateoftransitionofquantumenergy
andtherateofstimulatedor25
Intimedtthewavetravelsadistancedx=c
dti.ethen
Intimedtthewavetravelsa26
inwhichisthegainconstantatfrequency
itisgivenby:anapproximateexpressionis
beingthelinewidthinwhichisthegaincon27Dopplerwidth
Thisisoneofthefewcausesseriouslyaffectingequallybothemissionandabsorptionlines.Letalltheatomsemitlightofthesamewavelength.TheeffectivewavelengthobservedfromthosemovingtowardsanobserverisdiminishedandforthoseatomsmovingawayitisincreasedinaccordancewithDoppler’sprinciple.Whenwehaveamovingsourcesendingoutwavescontinuouslyitmoves.Thevelocityofthewavesisoftennotchangedbutthewavelengthandfrequencyasnotedbystationaryobservedalter.DopplerwidthThisiso28
Thusconsiderasourceofwavesmovingtowardsanobserverwithvelocityv.Thensincethesourceismovingthewaveswhicharebetweenthesourceandtheobserverwillbecrowdedintoasmallerdistancethanifthesourcehadbeenatrest.Ifthefrequencyiso,thenintimetthesourceemitotwaves.IfthefrequencyhadbeenatrestthesewaveswouldhaveoccupiedalengthAB.Butduetoitsmotionthesourcehascausedadistancevt,hencetheseotwavesarecompressedintoalengthwhereThusconsiderasource29thus
Observer
wherenl=c
thusObserverwherenl=c30激光原理及其应用(课件-laser-and-its-applications教学讲义31EvaluationofDopplerhalfwidth:
AccordingtoMaxwelliamdistributionofvelocities,fromthekinetictheoryofgasses,theprobabilitythatthevelocitywillbebetweenvandv+visgivenby:
Sothatthefractionofatomswhosetheirvelocitiesliebetweenvandv+visgivenbythefollowingequationwhereB=m=molecularweight,K=gasconstant,T=absolutetempEvaluationofDopplerhalfwid32
Substitutingforvinthelastequationfromequation(1)andsincetheintensityemittedwilldependonthenumberofatomshavingthevelocityintheregionvand
then,i.e.
I(n)=const
.
n=
nat
I(n)=I=const
I)n)=I
max=constSubstitutingforvinthe33
Therefor
I)n)=I
max
beingthehalfwidthofthespectrallineitisthewidthat
,then
ThereforI)n)=Imaxbein34CalculationofDopplerwidth:1-CalculatetheDoppler’swidthforHg198.whereK=1.38x10-16ergperdegreeattemp=300kand=5460Ao
solution
=molecularweightm=const.(atomicmassm\)const.=1.668x10-24gmwavenumber
=
=.015cm-1
CalculationofDopplerwidth:1352-Calculatethehalf-maximumlinewidth(Dopplerwidth)forHe-Nelasertransitionassumingadischargetemperatureofabout400Kandaneonatomicmassof20andwavelengthof632.8nm.
(Ans.,n=1500MHz)2-Calculatethehalf-maximum36AnexpressionfortheGaintakingintoconsiderationDopplerbroadening:
Inthecaseofbroadeningduetothermalmotion,thekinetictheorygiventhefractionofatomswhosecomponentofvelocityliesbetweenvxandvxaswheremistheatomicmass,KistheBoltzman’sconstantandTistheabsolutetemperature
AspreviouslyexplainedduetotheDopplereffect,theseatomswillemitorabsorbradiationpropagatinginthexdirectionoffrequency
AnexpressionfortheGaintak37(1)whereisthefrequencyofthelinecenter.Itfollowsthatthefractionofatomsinagivenlevelthatcanabsorboremitinthefrequencyrangetoisgivenbywhere
fromeqn.(1))where
(1)whereisthefrequency38
Therateofupwardtransitionis
Therateofstimulatedorinduceddownwardtransitions
Thenettimeratechangeofthespectralenergydensityintheinterval
isgivenbyTherateofupwardtransiti39
whereB21=B12=Bwhereat
whereat40where
ispositiveifN2<N1whichistheconditionforamplification.otherwiseifN2<N1whichinthenormalequilibriumcondition)thenisnegative,wehaveabsorption.whereispositiveifN241PopulationInversion
InordertoinvertpopulationofatomiclevelstheatomsmustbeexcitedbydepositingenergyinthemediumusingsuchmethodastodecreasethenumberofatomsatthelowerlevelNLandtoincreasethenumberofatomsattheupperlevelNu
.Thisprocessiscalledpumpingsincetheatomsareredistributedasifpumpedfromthelowerleveltotheupperlevel.Themethodsofpumpingarei)opticalpumping,wheretheatomsareexcitedbyilluminationoflightii)excitationbyelectricdischargeinthecaseofgasesiii)Injectionofcarriersbyaforwardcurrentthroughap-njunctioninthecaseofsemi-conductorsiv)excitationbyirradiationwithelectronbeamsv)excitationbychemicalreaction.Historically,in1954,Townessucceededinrealizingpopulationinversionwithamolecularbeamofammoniatomakeamaserat1.25cmwavelength.PopulationInversion42
Astheammoniamoleculararedistributedamongenergylevelsinthermalequilibrium,themoleculesattheupperlevelwerecollectedandthoseinthelowerlevelwereeliminatedbytheactionofaninhomogeneouselectricfield,sothatpopulationinversioncanbeachieved.However,suchamethodwherepopulationinversionisestablishedbydecreasingthenumberofatomsinthelowerlevelcannotbeappliedsuccessfullytoopticaltransition.ThisisbecausethenumberofatomsNuandNLasrelatedbyBoltzmann’sformulanamelyKBBoltzmannconst
Astheammoniamolecu43
yieldsNuNLinthemicrowavecase,sinceh<<KBTatthemicrowavefrequency,whilethepopulationoftheupperlevelNuintheopticalcaseisverysmall,sinceh>>KBTattheopticalfrequency.Therefore,itisnotsufficientbymerelyeliminatingatomsatthelowerlevel,butitisnecessarytoincreasethenumberofatomsattheupperlevelbyaprocessofpumping.
Foratwo-levelsystem,whenitsatomsareexitedbyirradiationorbyelectroncollision,thenumberofatomsattheupperlevelwillincrease,butatthesametimetheprobabilityofde-excitationthatbringstheseexcitedatomsbacktothelowerlevelwillincreasewithincidentlightorelectrons.yieldsNuNLinthe44
Consequentlynomatterhowstrongtheatomsmaybeexcited,populationinversioncannotbeobtained.Therefore,threeorfouratomicsystemsmustbeusedtoachievepopulationinversion.Itisnotalwaysnecessarythattheenergylevelsconcernedshouldbediscreteandsharp.Bandlevelsmaybeused.Thus,dyelasersandsemiconductorlaserscanbeconsideredasfour-levellaserswhosedescriptionfollows.Consequentlynomatter45PopulationInversioninaThree-levelLaser:
Therearemanythree–levellaserssuchasrubylaserandtheopticallypumpedgaslaser.Lettheenergiesandpopulationsoftherelevantthreelevelsoflaseratomicsystembedenotedrespectivelybyw1,w2,w3andN1,N2,N3.Ifw3>w2>w1asshowninfigure,thenN1>N2>N3inthethree–levelsysteminthermalequilibrium.Heretheloweststate1isnotnecessarilythegroundstateoftheatom.Atomsinlevel1willbeexcitedatomsofappropriateenergy.Wedenotebytheprobabilityofexcitingtheatomsfromlevel1tolevel3byanysuchmethodofpumping.PopulationInversioninaThre46Fig.(6(
Whenthepumpingisremoved,theexcitedatomswillingeneralgraduallyreturntothestateofthermalequilibrium.Thisistermedrelaxation.Ifweconsidertheatomsindividuallytherelaxationprocesstakesplaceatthesametimeasotheratomsareexcited.
Fig.(6(Whenthepumping47
Besidestheradiativeprocess,wheretheexcitedatomsmakeatransitiontothelowerstatebyemittingaphoton,therearenon-radiativeprocessessuchascollisionofmoleculesingasesortheatomlatticeinteractioninsolids,wheretheexcitedatommakesatransitiontothelowerstatebyreleasingitsenergyintheformofmolecularkineticenergyorvibrationalenergyofthelattice.Sincerelaxationistheresultsofsuchstatisticalprocesses,therelaxationrateortherelaxationconstantisdefinedasastatisticalaverageoftherelaxationprobabilitiesoftheexcitedatomsperunittime.Thereciprocaloftherelaxationrateistheaveragelifetimeoftheexcitedatoms:Besidestheradiative48
Now,theprobability
Lu
ofanatombeingthermallyexcitedfromthelowerstatewLtotheupperstatewuisrelatedtotheprobabilityuLofthereveresprocessfromwutowLbythermalrelaxation.Thisrelationinthermalequilibrium.is
Nu
uL=NL
Lu
whereNu=
WhereTisthetemperatureofthemedium.
Therefor
(1(
Now,theprobability49Fig.(7)
Thislastrelationholdsgenerally,evenifNuandNLdonotrepresentpopulationsinthermalequilibrium.Iftheseprobabilitiesareconstantundertheconditionsconsideredtherateequationsexpressingtherateofchangeatthenumberofatomsineachlevelofthethree–levelsystemunderpumpingaregivenasfollows.Fig.(7)Thislastrelat50(2)(3)(4)WhereN1+N2+N3
=const.=Nthetotalnumberofatomsinthethree–levelsystem.(2)(3)(4)WhereN1+N2+N3=cons51
Inthesteadystate,thedistributionofthenumberofatomsunderconstantpumpingcanbeobtainedbyputtingtheleft–handsideofequations2,3&4equaltozero.AlthoughthesolutionsgivingN1,N2&N3canbereadilycalculated,yetweshallassumethattheseparationsbetweenthelevelaresufficientlygreaterthanthethermalenergyKBT,sothatwhenapplyingequation(1)wefindthat
,
wu-wL>>KBT
Sothat
,
Inthesteadystate,th52
Wecanthusneglect12,13,23andequations2,3&4yieldinthesteadystate(5)(6)(7)(8)Therefore(9)(10)Wecanthusneglect153Therefore(11)Fromequations5,6,7and11wecanwrite
Thusweobtainthesteady
–statesolution(12)Therefore(11)Fromequations554(13)Fromequation
12(14)(13)Fromequation12(14)55
fromequations(12,14)
(15)Iftheexcitationissostrongsuchthat
wehave
N2>N1(15\)fromequations(12,14)(1556
Thisistheconditionofpopulationinversion.Thustoobtainpopulationinversionwithmoderatepumping21shouldbesmalland32shouldbelargecomparedwith31
.Thismeansthatitisdesirablethattherelaxationfromtheupperlaserleveltothelowerlaserlevelshouldbeslow,whiletherelaxationfromtheuppermostlevel3towhichtheatomswasinitiallyexcitedtotheupperlaserlevel2shouldbefast.Fig.(8)Thisisthecondition57
ThepopulationinversionasdefinedbyN=N2-N1iscalculatedfrom12&14asafunctionoftheexcitationintensitytobeN
put
o=
Thepopulationinversi58=
(16)
Letusrepresentgraphicallythedependenceof
asafunctionofexcitationintensity
expressedintermsofo
.Considerthetwocaseswhen
)i)
32
=21.Where
21isthelasertransition)ii(
32
=9
21=(16)Letusrepresentgrap59(i)
Inthefirstcase
0
21015-104/1113/32(ii)
Inthesecondcase
010/9
4
9
1924
-1
0
0.520.71
0.81
0.82
(i)Inthefirstcase021015-60Fig.(9(Fig.(9(61Populationinversioninafour-levellaser
Sincethelowerlevelofthelasertransitionisthelowestlevelinathere-levellaser,themajorityofatoms(N1
N)areinthislevelatthermalequilibriumthusinordertoinvertthepopulation,thenumberofatomsinthelowestlevelmustbereducedtolessthanhalfbyintensepumping.Thisdemandismuchreducedinafour-levelsystem.Letusconsideranatom,whichhasfourenergylevelsasshowninfig(10).Itisrequiredtoinvertthepopulationbetweenlevels2and1.Sincethelowerlevel1liesatanenergyhigherthanKBTabovethegroundlevel,thenumberofthermallyexcitedatomsinthelowerlaserlevel1issosmallthatthepopulationcanbeeasilyinvertedbypumpingarelativelysmallnumberofatomsintotheupperlevel2.Theconditionsforpopulationinversioninthiscaseareasfollows.Populationinversioninafour62
Althoughseparationsbetweenlevels1,2&3areassumedtobemuchgreaterthanKBTasinthecaseofathreelevellaser,thenumberofthermallyexcitedatomsgo,NofromthemostpopulationgroundlevelOtolevel1arenotneglected.Therateequationsforatomicpopulationsinthefour-levels,thanbecome.Althoughseparationsb63SinceN=No+N1+N2+N3
LaserEmissionFig.(11)Energy-leveldiagramofafour-levellaser(17)SinceN=No+N1+N2+N3LaserEmis64where
2
=
20
+
21&
3
=
3o
+31+
32Thesteady–statesolutionisobtainedasbefore
o1No-
1oN1+
21N2+31N3=0-
2N2+
32N3
=0No-
3N3
=0Therefore,(18)where2=20+21&65fromequation19,20N2is>N1when(19)(20)fromequation19,20N2is>N66(21)
Thisistheconditionforpopulationinversionnow01inthenumeratorofthisequationistheprobabilityofthermalexcitationfromlevelOtolevel1,andisasmall
quantityasshownbytherelation
therefore,theexcitationintensity
necessaryforpopulationinversionislowered.
Since
&(21)Thisistheconditio67Thenequation(21)canbeapproximated
(22)Comparingequation(22)withequation(15\)forpopulationinversioninathreelevellaser,itisseenthattheyaresimilarexceptforthefactorSincethefour-levelsystemhasanextralevelO,itisobviousthatwehave
insteadof
insteadof
.Hereitisthefactor,
whichisimportant,becausepopulationinversioncanbeobtainedevenwithveryweekpumpingifthelowerlaserlevel1isabovethegroundlevelObyatleastafewtimesKBTinenergy.Thenequation(21)canbeappr68LaserOperation(1)EssentialElementsofLaser
Thelaserdeviceconsistsofbasicallyofthreeelements;Externalsource(pump),Amplifyingmediumandopticalcavity(resonator(LaserOperation(1)EssentialE69
Thepumpisanexternalenergysourcethatproducesapopulationinversioninthelasermedium.Pumpscanbeoptical,electrical,chemicalorthermalinnature.Forgaslasers(e.g.He-Nelaser),theusedpumpisanelectricaldischarge.Theimportantparametersgoverningthistypeofpumpingaretheelectronexcitationcross-sectionsandthelifetimesoftheenergylevels.Thepumpisanexternal70
Insomelasers,thefreeelectronsgeneratedinthedischargeprocesscollidewithandexcitethelaseratoms,ions,ormoleculesdirectly.Inothers,theexcitationoccursbymeansofinelasticatom-atom(ormolecule–molecule)collisions.Inthiscaseamixtureoftwogassesisusedsuchthatthetowdifferentspeciesofatoms,sayAandB,haveexcitedstatesA*andB*.Energymaybetransferredfromoneexcitedspeciestotheotherinaprocessasfollowsrelation
Insomelasers,thefr71
A*+BA+B*e.g.He-Nelaser,wherethelaser–activeneonatomsareexcitedbyresonanttransferofenergyfromheliumatomsinmetastablestate,wheretheHeatomsreceivetheirenergyfromfreeelectronsviacollisions.A*+BA+B*722-
Lasermedium
Theamplifyingmediumorlasermediumisanimportantpartofthelaserdevice.Manylaserarenamedafterthetypeoflasermediumused(e.g.He-Ne,CO2andNd:YAG).Thislasermediummaybegas,liquid,orsolid,determinesthewavelengthofthelaserradiation.Insomelaserstheamplifyingmediumconsistsoftwoparts,thelaserhostmediumandthelaseratoms.Forexample,inNd:YAGlaser,thehostmediumisacrystalofyttriumAluminumGarnet(orYAG),whereasthelaseratomsaretheNeodymiumions.Themostimportantrequirementoftheamplifyingmediumisitsabilitytosupportapopulationinversio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西警官职业学院《影视艺术欣赏》2023-2024学年第二学期期末试卷
- 通辽职业学院《文化创意产业概论》2023-2024学年第二学期期末试卷
- 江西现代职业技术学院《动物遗传学实验》2023-2024学年第二学期期末试卷
- 昆明文理学院《书籍装帧设计》2023-2024学年第二学期期末试卷
- 建筑公司整体转让合同
- 农民公寓买卖合同
- 临时工聘用炊事员合同书
- 品牌形象代言合同
- 指定用途借款合同
- 实验室设备采购合同
- 护理实习生岗前培训课件
- 计算猪单位体重总产热量的计算公式
- 早期大肠癌的诊断与内镜下治疗课件
- 艾宾浩斯记忆表格遗忘曲线
- 2023年4月自考00540外国文学史试题及答案含评分标准
- 第6章-非线性有限元法(几何非线性)课件
- 中国志愿服务发展指数报告
- 初中物理-流体压强与流速的关系教学设计学情分析教材分析课后反思
- 畜牧业经营预测与决策 畜牧业经营预测(畜牧业经营管理)
- 陕西省公务员招聘面试真题和考官题本及答案102套
- 差额定率分档累进法计算
评论
0/150
提交评论