激光原理及其应用课件-laser-and-its-applications教学讲义_第1页
激光原理及其应用课件-laser-and-its-applications教学讲义_第2页
激光原理及其应用课件-laser-and-its-applications教学讲义_第3页
激光原理及其应用课件-laser-and-its-applications教学讲义_第4页
激光原理及其应用课件-laser-and-its-applications教学讲义_第5页
已阅读5页,还剩639页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

激光原理及其应用(课件)Laseranditsapplications激光原理及其应用(课件)Laseranditsapp1LaseranditsapplicationsChapter(1):TheoryofLasing(2)

Chapter(2):Characteristicsoflaserbeam()

Chapter(3):Typesoflasersources()Chapter(4):Laserapplications()

ContentspageLaseranditsapplications2Chapter(1)TheoryofLasing1.Introduction(Briefhistoryoflaser)

Thelaserisperhapsthemostimportantopticaldevicetobedevelopedinthepast50years.Sinceitsarrivalinthe1960s,ratherquietandunheraldedoutsidethescientificcommunity,ithasprovidedthestimulustomakeopticsoneofthemostrapidlygrowingfieldsinscienceandtechnology

today.Chapter(1)TheoryofLasing1.3激光原理及其应用(课件-laser-and-its-applications教学讲义4激光原理及其应用(课件-laser-and-its-applications教学讲义5激光原理及其应用(课件-laser-and-its-applications教学讲义6

BeforeAfter

(i)Stimulatedabsorption

ii)Spontaneousemission

)(iii)StimulatedemissionBefore7)ii)Spontaneousemission

Consideranatom(ormolecule)ofthematerialisexistedinitiallyinanexcitedstateE2Noexternalradiationisrequiredtoinitiatetheemission.SinceE2>E1,theatomwilltendtospontaneouslydecaytothegroundstateE1,aphotonofenergyh

=E2-E1isreleasedinarandomdirectionasshownin(Fig.1-ii).Thisprocessiscalled“spontaneousemission”Notethat;whenthereleaseenergydifference(E2-E1)isdeliveredintheformofane.mwave,theprocesscalled"radiativeemission"whichisoneofthetwopossibleways“non-radiative”decayisoccurredwhentheenergydifference(E2-E1)isdeliveredinsomeformotherthane.mradiation(e.g.itmaytransfertokineticenergyofthesurrounding))ii)Spontaneousemission8(iii)Stimulatedemission

Quitebycontrast“stimulatedemission”(Fig.1-iii)requiresthepresenceofexternalradiationwhenanincidentphotonofenergyh

=E2-E1passesbyanatominanexcitedstateE2,itstimulatestheatomtodropordecaytothelowerstateE1.Inthisprocess,theatomreleasesaphotonofthesameenergy,direction,phaseandpolarizationasthatofthephotonpassingby,theneteffectistwoidenticalphotons(2h)intheplaceofone,oranincreaseintheintensityoftheincidentbeam.Itispreciselythisprocessesofstimulatedemissionthatmakespossibletheamplificationoflightinlasers.(iii)Stimulatedemission9GrowthofLaserBeam

Atomsexistmostofthetimeinoneofanumberofcertaincharacteristicenergylevels.Theenergylevelorenergystateofanatomisaresultoftheenergyleveloftheindividualelectronsofthatparticularatom.Inanygroupofatoms,thermalmotionoragitationcausesaconstantmotionoftheatomsbetweenlowandhighenergylevels.IntheabsenceofanyappliedelectromagneticradiationthedistributionoftheatomsintheirvariousallowedstatesisgovernedbyBoltzman’slawwhichstatesthat:Thetheoryoflasing

GrowthofLaserBeamA10

ifanassemblageofatomsisinstateofthermalequilibriumatanabsolutetemp.T,thenumberofatomsN2inoneenergylevelE2isrelatedtothenumberN1inanotherenergylevelE1bytheequation.WhereE2>E1clearlyN2<N1

KBoltzmann’sconstant=1.38x10-16erg/degree=1.38x10-23j/KTtheabsolutetemp.indegreesKelvinifanassemblageofatom11

Atabsolutezeroallatomswillbeinthegroundstate.Thereissuchalackofthermalmotionamongtheelectronsthattherearenoatomsinhigherenergylevels.Asthetemperatureincreasesatomschangerandomlyfromlowtotheheightenergystatesandbackagain.Theatomsareraisedtohighenergystatesbychanceelectroncollisionandtheyreturntothelowenergystatebytheirnaturaltendencytoseekthelowestenergylevel.Whentheyreturntothelowerenergystateelectromagneticradiationisemitted.Thisisspontaneousemissionofradiationandbecauseofitsrandomnature,itisincoherentAtabsolutezeroalla12

Asindicatedbytheequation,thenumberofatomsdecreasesastheenergylevelincreases.Asthetempincreases,moreatomswillattainhigherenergylevels.However,thelowerenergylevelswillbestillmorepopulated.Einsteinin1917firstintroducedtheconceptofstimulatedorinducedemissionofradiationbyatomicsystems.Heshowedthatinordertodescribecompletelytheinteractionofmatterandradiative,itisnecessarytoincludethatprocessinwhichanexcitedatommaybeinducedbythepresenceofradiationemitaphotonanddecaytolowerenergystate.Asindicatedbythee13

AnatominlevelE2candecaytolevelE1byemissionofphoton.LetuscallA21thetransitionprobabilityperunittimeforspontaneousemissionfromlevelE2tolevelE1.ThenthenumberofspontaneousdecayspersecondisN2A21,i.e.thenumberofspontaneousdecayspersecond=N2A21.Inadditiontothesespontaneoustransitions,therewillinducedorstimulatedtransitions.Thetotalratetotheseinducedtransitionsbetweenlevel2andlevel1isproportionaltothedensity(U)ofradiationoffrequency,where

=(E2-E1)/h,hPlanck'sconst.AnatominlevelE2c14

LetB21andB12denotetheproportionalityconstantsforstimulatedemissionandabsorption.Thennumberofstimulateddownwardtransitioninstimulatedemissionpersecond=N2

B21

U

similarly,thenumberofstimulatedupwardtransitionspersecond=N1

B12U

TheproportionalityconstantsAandBareknownastheEinsteinAandBcoefficients.Underequilibriumconditionswehave

LetB21andB12denote15bysolvingforU(densityoftheradiation)weobtainU[N1

B12-N2

B21]=A21

N2N2A21+N2B21U=N1B12USP

ST

Ab

bysolvingforU(densityof16AccordingtoPlanck’sformulaofradiation

)2))1)AccordingtoPlanck’sformula17fromequations1and2wehave

B12=B21

(3)equation3and4areEinstein’srelations.Thusforatomsinequilibriumwiththermalradiation.)4(

fromequation2and4

fromequations1and2wehave18(5)Accordingly,therateofinducedemissionisextremelysmallinthevisibleregionofthespectrumwithordinaryopticalsources(T103K.((5)Accordingly,therateofin19

Henceinsuchsources,mostoftheradiationisemittedthroughspontaneoustransitions.Sincethesetransitionsoccurinarandommanner,ordinarysourcesofvisibleradiationareincoherent.Ontheotherhand,inalasertheinducedtransitionsbecomecompletelydominant.Oneresultisthattheemittedradiationishighlycoherent.Anotheristhatthespectralintensityattheoperatingfrequencyofthelaserismuchgreaterthanthespectralintensitiesofordinarylightsources.

Henceinsuchsources20

AmplificationinaMedium

Consideranopticalmediumthroughwhichradiationispassing.SupposethatthemediumcontainsatomsinvariousenergylevelsE1,E2,E3,….letusfittourattentiontotwolevelsE1&E2whereE2>E1wehavealreadyseenthattherateofstimulatedemissionandabsorptioninvolvingthesetwolevelsareproportionaltoN2B21&N1B12respectively.SinceB21=B12,therateofstimulateddownwardtransitionswillexceedthatoftheupwardtransitionswhenN2>N1,.i.ethepopulationoftheupperstateisgreaterthanthatofthelowerstatesuchaconditioniscondrarytothethermalequilibriumdistributiongivenbyBoltzmann’slow.Itistermedapopulationinversion.Ifapopulationinversionexist,thenalightbeamwillincreaseinintensityi.e.itwillbeamplifiedasitpassesthroughthemedium.Thisisbecausethegainduetotheinducedemissionexceedsthelossduetoabsorption.AmplificationinaMedium21givestherateofgrowthofthebeamintensityinthedirectionofpropagation,anisthegainconstantatfrequency

givestherateofgrowthofth22QuantitativeAmplificationoflight

Inordertodeterminequantitativelytheamountofamplificationinamediumweconsideraparallelbeamoflightthatpropagatethroughamediumenjoyingpopulationinversion.Foracollimatedbeam,thespectralenergydensityUisrelatedtotheintensityinthefrequencyinterval

to

+bytheformula.QuantitativeAmplificationof23

DuetotheDopplereffectandotherline-broadeningeffectsnotalltheatomsinagivenenergylevelareeffectiveforemissionorabsorptioninaspecifiedfrequencyinterval.Onlyacertainnumber

N1oftheN1atomsatlevel1areavailableforabsorption.SimilarlyoftheN2atomsinlevel2,thenumber

N2areavailableforemission.Consequently,therateofupwardtransitionsisgivenby:DuetotheDopplereffecta24andtherateofstimulatedorinduceddownwardtransitionsisgivenby:

Noweachupwardtransitionsubtractsaquantumenergyhfromthebeam.Similarly,eachdownwardtransitionaddsthesameamountthereforethenettimerateofchangeofthespectralenergydensityintheinterval

isgivenby

where(h

B

NU)=therateoftransitionofquantumenergy

andtherateofstimulatedor25

Intimedtthewavetravelsadistancedx=c

dti.ethen

Intimedtthewavetravelsa26

inwhichisthegainconstantatfrequency

itisgivenby:anapproximateexpressionis

beingthelinewidthinwhichisthegaincon27Dopplerwidth

Thisisoneofthefewcausesseriouslyaffectingequallybothemissionandabsorptionlines.Letalltheatomsemitlightofthesamewavelength.TheeffectivewavelengthobservedfromthosemovingtowardsanobserverisdiminishedandforthoseatomsmovingawayitisincreasedinaccordancewithDoppler’sprinciple.Whenwehaveamovingsourcesendingoutwavescontinuouslyitmoves.Thevelocityofthewavesisoftennotchangedbutthewavelengthandfrequencyasnotedbystationaryobservedalter.DopplerwidthThisiso28

Thusconsiderasourceofwavesmovingtowardsanobserverwithvelocityv.Thensincethesourceismovingthewaveswhicharebetweenthesourceandtheobserverwillbecrowdedintoasmallerdistancethanifthesourcehadbeenatrest.Ifthefrequencyiso,thenintimetthesourceemitotwaves.IfthefrequencyhadbeenatrestthesewaveswouldhaveoccupiedalengthAB.Butduetoitsmotionthesourcehascausedadistancevt,hencetheseotwavesarecompressedintoalengthwhereThusconsiderasource29thus

Observer

wherenl=c

thusObserverwherenl=c30激光原理及其应用(课件-laser-and-its-applications教学讲义31EvaluationofDopplerhalfwidth:

AccordingtoMaxwelliamdistributionofvelocities,fromthekinetictheoryofgasses,theprobabilitythatthevelocitywillbebetweenvandv+visgivenby:

Sothatthefractionofatomswhosetheirvelocitiesliebetweenvandv+visgivenbythefollowingequationwhereB=m=molecularweight,K=gasconstant,T=absolutetempEvaluationofDopplerhalfwid32

Substitutingforvinthelastequationfromequation(1)andsincetheintensityemittedwilldependonthenumberofatomshavingthevelocityintheregionvand

then,i.e.

I(n)=const

.

n=

nat

I(n)=I=const

I)n)=I

max=constSubstitutingforvinthe33

Therefor

I)n)=I

max

beingthehalfwidthofthespectrallineitisthewidthat

,then

ThereforI)n)=Imaxbein34CalculationofDopplerwidth:1-CalculatetheDoppler’swidthforHg198.whereK=1.38x10-16ergperdegreeattemp=300kand=5460Ao

solution

=molecularweightm=const.(atomicmassm\)const.=1.668x10-24gmwavenumber

=

=.015cm-1

CalculationofDopplerwidth:1352-Calculatethehalf-maximumlinewidth(Dopplerwidth)forHe-Nelasertransitionassumingadischargetemperatureofabout400Kandaneonatomicmassof20andwavelengthof632.8nm.

(Ans.,n=1500MHz)2-Calculatethehalf-maximum36AnexpressionfortheGaintakingintoconsiderationDopplerbroadening:

Inthecaseofbroadeningduetothermalmotion,thekinetictheorygiventhefractionofatomswhosecomponentofvelocityliesbetweenvxandvxaswheremistheatomicmass,KistheBoltzman’sconstantandTistheabsolutetemperature

AspreviouslyexplainedduetotheDopplereffect,theseatomswillemitorabsorbradiationpropagatinginthexdirectionoffrequency

AnexpressionfortheGaintak37(1)whereisthefrequencyofthelinecenter.Itfollowsthatthefractionofatomsinagivenlevelthatcanabsorboremitinthefrequencyrangetoisgivenbywhere

fromeqn.(1))where

(1)whereisthefrequency38

Therateofupwardtransitionis

Therateofstimulatedorinduceddownwardtransitions

Thenettimeratechangeofthespectralenergydensityintheinterval

isgivenbyTherateofupwardtransiti39

whereB21=B12=Bwhereat

whereat40where

ispositiveifN2<N1whichistheconditionforamplification.otherwiseifN2<N1whichinthenormalequilibriumcondition)thenisnegative,wehaveabsorption.whereispositiveifN241PopulationInversion

InordertoinvertpopulationofatomiclevelstheatomsmustbeexcitedbydepositingenergyinthemediumusingsuchmethodastodecreasethenumberofatomsatthelowerlevelNLandtoincreasethenumberofatomsattheupperlevelNu

.Thisprocessiscalledpumpingsincetheatomsareredistributedasifpumpedfromthelowerleveltotheupperlevel.Themethodsofpumpingarei)opticalpumping,wheretheatomsareexcitedbyilluminationoflightii)excitationbyelectricdischargeinthecaseofgasesiii)Injectionofcarriersbyaforwardcurrentthroughap-njunctioninthecaseofsemi-conductorsiv)excitationbyirradiationwithelectronbeamsv)excitationbychemicalreaction.Historically,in1954,Townessucceededinrealizingpopulationinversionwithamolecularbeamofammoniatomakeamaserat1.25cmwavelength.PopulationInversion42

Astheammoniamoleculararedistributedamongenergylevelsinthermalequilibrium,themoleculesattheupperlevelwerecollectedandthoseinthelowerlevelwereeliminatedbytheactionofaninhomogeneouselectricfield,sothatpopulationinversioncanbeachieved.However,suchamethodwherepopulationinversionisestablishedbydecreasingthenumberofatomsinthelowerlevelcannotbeappliedsuccessfullytoopticaltransition.ThisisbecausethenumberofatomsNuandNLasrelatedbyBoltzmann’sformulanamelyKBBoltzmannconst

Astheammoniamolecu43

yieldsNuNLinthemicrowavecase,sinceh<<KBTatthemicrowavefrequency,whilethepopulationoftheupperlevelNuintheopticalcaseisverysmall,sinceh>>KBTattheopticalfrequency.Therefore,itisnotsufficientbymerelyeliminatingatomsatthelowerlevel,butitisnecessarytoincreasethenumberofatomsattheupperlevelbyaprocessofpumping.

Foratwo-levelsystem,whenitsatomsareexitedbyirradiationorbyelectroncollision,thenumberofatomsattheupperlevelwillincrease,butatthesametimetheprobabilityofde-excitationthatbringstheseexcitedatomsbacktothelowerlevelwillincreasewithincidentlightorelectrons.yieldsNuNLinthe44

Consequentlynomatterhowstrongtheatomsmaybeexcited,populationinversioncannotbeobtained.Therefore,threeorfouratomicsystemsmustbeusedtoachievepopulationinversion.Itisnotalwaysnecessarythattheenergylevelsconcernedshouldbediscreteandsharp.Bandlevelsmaybeused.Thus,dyelasersandsemiconductorlaserscanbeconsideredasfour-levellaserswhosedescriptionfollows.Consequentlynomatter45PopulationInversioninaThree-levelLaser:

Therearemanythree–levellaserssuchasrubylaserandtheopticallypumpedgaslaser.Lettheenergiesandpopulationsoftherelevantthreelevelsoflaseratomicsystembedenotedrespectivelybyw1,w2,w3andN1,N2,N3.Ifw3>w2>w1asshowninfigure,thenN1>N2>N3inthethree–levelsysteminthermalequilibrium.Heretheloweststate1isnotnecessarilythegroundstateoftheatom.Atomsinlevel1willbeexcitedatomsofappropriateenergy.Wedenotebytheprobabilityofexcitingtheatomsfromlevel1tolevel3byanysuchmethodofpumping.PopulationInversioninaThre46Fig.(6(

Whenthepumpingisremoved,theexcitedatomswillingeneralgraduallyreturntothestateofthermalequilibrium.Thisistermedrelaxation.Ifweconsidertheatomsindividuallytherelaxationprocesstakesplaceatthesametimeasotheratomsareexcited.

Fig.(6(Whenthepumping47

Besidestheradiativeprocess,wheretheexcitedatomsmakeatransitiontothelowerstatebyemittingaphoton,therearenon-radiativeprocessessuchascollisionofmoleculesingasesortheatomlatticeinteractioninsolids,wheretheexcitedatommakesatransitiontothelowerstatebyreleasingitsenergyintheformofmolecularkineticenergyorvibrationalenergyofthelattice.Sincerelaxationistheresultsofsuchstatisticalprocesses,therelaxationrateortherelaxationconstantisdefinedasastatisticalaverageoftherelaxationprobabilitiesoftheexcitedatomsperunittime.Thereciprocaloftherelaxationrateistheaveragelifetimeoftheexcitedatoms:Besidestheradiative48

Now,theprobability

Lu

ofanatombeingthermallyexcitedfromthelowerstatewLtotheupperstatewuisrelatedtotheprobabilityuLofthereveresprocessfromwutowLbythermalrelaxation.Thisrelationinthermalequilibrium.is

Nu

uL=NL

Lu

whereNu=

WhereTisthetemperatureofthemedium.

Therefor

(1(

Now,theprobability49Fig.(7)

Thislastrelationholdsgenerally,evenifNuandNLdonotrepresentpopulationsinthermalequilibrium.Iftheseprobabilitiesareconstantundertheconditionsconsideredtherateequationsexpressingtherateofchangeatthenumberofatomsineachlevelofthethree–levelsystemunderpumpingaregivenasfollows.Fig.(7)Thislastrelat50(2)(3)(4)WhereN1+N2+N3

=const.=Nthetotalnumberofatomsinthethree–levelsystem.(2)(3)(4)WhereN1+N2+N3=cons51

Inthesteadystate,thedistributionofthenumberofatomsunderconstantpumpingcanbeobtainedbyputtingtheleft–handsideofequations2,3&4equaltozero.AlthoughthesolutionsgivingN1,N2&N3canbereadilycalculated,yetweshallassumethattheseparationsbetweenthelevelaresufficientlygreaterthanthethermalenergyKBT,sothatwhenapplyingequation(1)wefindthat

,

wu-wL>>KBT

Sothat

,

Inthesteadystate,th52

Wecanthusneglect12,13,23andequations2,3&4yieldinthesteadystate(5)(6)(7)(8)Therefore(9)(10)Wecanthusneglect153Therefore(11)Fromequations5,6,7and11wecanwrite

Thusweobtainthesteady

–statesolution(12)Therefore(11)Fromequations554(13)Fromequation

12(14)(13)Fromequation12(14)55

fromequations(12,14)

(15)Iftheexcitationissostrongsuchthat

wehave

N2>N1(15\)fromequations(12,14)(1556

Thisistheconditionofpopulationinversion.Thustoobtainpopulationinversionwithmoderatepumping21shouldbesmalland32shouldbelargecomparedwith31

.Thismeansthatitisdesirablethattherelaxationfromtheupperlaserleveltothelowerlaserlevelshouldbeslow,whiletherelaxationfromtheuppermostlevel3towhichtheatomswasinitiallyexcitedtotheupperlaserlevel2shouldbefast.Fig.(8)Thisisthecondition57

ThepopulationinversionasdefinedbyN=N2-N1iscalculatedfrom12&14asafunctionoftheexcitationintensitytobeN

put

o=

Thepopulationinversi58=

(16)

Letusrepresentgraphicallythedependenceof

asafunctionofexcitationintensity

expressedintermsofo

.Considerthetwocaseswhen

)i)

32

=21.Where

21isthelasertransition)ii(

32

=9

21=(16)Letusrepresentgrap59(i)

Inthefirstcase

0

21015-104/1113/32(ii)

Inthesecondcase

010/9

4

9

1924

-1

0

0.520.71

0.81

0.82

(i)Inthefirstcase021015-60Fig.(9(Fig.(9(61Populationinversioninafour-levellaser

Sincethelowerlevelofthelasertransitionisthelowestlevelinathere-levellaser,themajorityofatoms(N1

N)areinthislevelatthermalequilibriumthusinordertoinvertthepopulation,thenumberofatomsinthelowestlevelmustbereducedtolessthanhalfbyintensepumping.Thisdemandismuchreducedinafour-levelsystem.Letusconsideranatom,whichhasfourenergylevelsasshowninfig(10).Itisrequiredtoinvertthepopulationbetweenlevels2and1.Sincethelowerlevel1liesatanenergyhigherthanKBTabovethegroundlevel,thenumberofthermallyexcitedatomsinthelowerlaserlevel1issosmallthatthepopulationcanbeeasilyinvertedbypumpingarelativelysmallnumberofatomsintotheupperlevel2.Theconditionsforpopulationinversioninthiscaseareasfollows.Populationinversioninafour62

Althoughseparationsbetweenlevels1,2&3areassumedtobemuchgreaterthanKBTasinthecaseofathreelevellaser,thenumberofthermallyexcitedatomsgo,NofromthemostpopulationgroundlevelOtolevel1arenotneglected.Therateequationsforatomicpopulationsinthefour-levels,thanbecome.Althoughseparationsb63SinceN=No+N1+N2+N3

LaserEmissionFig.(11)Energy-leveldiagramofafour-levellaser(17)SinceN=No+N1+N2+N3LaserEmis64where

2

=

20

+

21&

3

=

3o

+31+

32Thesteady–statesolutionisobtainedasbefore

o1No-

1oN1+

21N2+31N3=0-

2N2+

32N3

=0No-

3N3

=0Therefore,(18)where2=20+21&65fromequation19,20N2is>N1when(19)(20)fromequation19,20N2is>N66(21)

Thisistheconditionforpopulationinversionnow01inthenumeratorofthisequationistheprobabilityofthermalexcitationfromlevelOtolevel1,andisasmall

quantityasshownbytherelation

therefore,theexcitationintensity

necessaryforpopulationinversionislowered.

Since

&(21)Thisistheconditio67Thenequation(21)canbeapproximated

(22)Comparingequation(22)withequation(15\)forpopulationinversioninathreelevellaser,itisseenthattheyaresimilarexceptforthefactorSincethefour-levelsystemhasanextralevelO,itisobviousthatwehave

insteadof

insteadof

.Hereitisthefactor,

whichisimportant,becausepopulationinversioncanbeobtainedevenwithveryweekpumpingifthelowerlaserlevel1isabovethegroundlevelObyatleastafewtimesKBTinenergy.Thenequation(21)canbeappr68LaserOperation(1)EssentialElementsofLaser

Thelaserdeviceconsistsofbasicallyofthreeelements;Externalsource(pump),Amplifyingmediumandopticalcavity(resonator(LaserOperation(1)EssentialE69

Thepumpisanexternalenergysourcethatproducesapopulationinversioninthelasermedium.Pumpscanbeoptical,electrical,chemicalorthermalinnature.Forgaslasers(e.g.He-Nelaser),theusedpumpisanelectricaldischarge.Theimportantparametersgoverningthistypeofpumpingaretheelectronexcitationcross-sectionsandthelifetimesoftheenergylevels.Thepumpisanexternal70

Insomelasers,thefreeelectronsgeneratedinthedischargeprocesscollidewithandexcitethelaseratoms,ions,ormoleculesdirectly.Inothers,theexcitationoccursbymeansofinelasticatom-atom(ormolecule–molecule)collisions.Inthiscaseamixtureoftwogassesisusedsuchthatthetowdifferentspeciesofatoms,sayAandB,haveexcitedstatesA*andB*.Energymaybetransferredfromoneexcitedspeciestotheotherinaprocessasfollowsrelation

Insomelasers,thefr71

A*+BA+B*e.g.He-Nelaser,wherethelaser–activeneonatomsareexcitedbyresonanttransferofenergyfromheliumatomsinmetastablestate,wheretheHeatomsreceivetheirenergyfromfreeelectronsviacollisions.A*+BA+B*722-

Lasermedium

Theamplifyingmediumorlasermediumisanimportantpartofthelaserdevice.Manylaserarenamedafterthetypeoflasermediumused(e.g.He-Ne,CO2andNd:YAG).Thislasermediummaybegas,liquid,orsolid,determinesthewavelengthofthelaserradiation.Insomelaserstheamplifyingmediumconsistsoftwoparts,thelaserhostmediumandthelaseratoms.Forexample,inNd:YAGlaser,thehostmediumisacrystalofyttriumAluminumGarnet(orYAG),whereasthelaseratomsaretheNeodymiumions.Themostimportantrequirementoftheamplifyingmediumisitsabilitytosupportapopulationinversio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论