



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离2.已知集合,集合,若,则()A. B. C. D.3.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.04.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.5.的内角的对边分别为,已知,则角的大小为()A. B. C. D.6.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)7.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.8.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.9.已知为锐角,且,则等于()A. B. C. D.10.若复数满足(是虚数单位),则()A. B. C. D.11.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A. B. C. D.12.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.25二、填空题:本题共4小题,每小题5分,共20分。13.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)14.设定义域为的函数满足,则不等式的解集为__________.15.若x,y均为正数,且,则的最小值为________.16.设变量,,满足约束条件,则目标函数的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.18.(12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:处罚金额(单位:元)5101520会闯红灯的人数50402010若用表中数据所得频率代替概率.(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?19.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.20.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.21.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.22.(10分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】化简圆M:x2+(y-a)2=a又N(1,1),r2、A【答案解析】
根据或,验证交集后求得的值.【题目详解】因为,所以或.当时,,不符合题意,当时,.故选A.【答案点睛】本小题主要考查集合的交集概念及运算,属于基础题.3、C【答案解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【题目详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【答案点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.4、A【答案解析】
由的解集,可知及,进而可求出方程的解,从而可求出的解集.【题目详解】由的解集为,可知且,令,解得,,因为,所以的解集为,故选:A.【答案点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.5、A【答案解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【题目详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【答案点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.6、C【答案解析】
根据并集的求法直接求出结果.【题目详解】∵,∴,故选C.【答案点睛】考查并集的求法,属于基础题.7、C【答案解析】
由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【题目详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【答案点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.8、D【答案解析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【题目详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【答案点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.9、C【答案解析】
由可得,再利用计算即可.【题目详解】因为,,所以,所以.故选:C.【答案点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.10、B【答案解析】
利用复数乘法运算化简,由此求得.【题目详解】依题意,所以.故选:B【答案点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.11、A【答案解析】
由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【题目详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.【答案点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.12、D【答案解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【题目详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【答案点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
根据题意,设,则,所以,解得,所以,从而有.14、【答案解析】
根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论.【题目详解】设F(x),则F′(x),∵,∴F′(x)>0,即函数F(x)在定义域上单调递增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解为故答案为:【答案点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.15、4【答案解析】
由基本不等式可得,则,即可解得.【题目详解】方法一:,当且仅当时取等.方法二:因为,所以,所以,当且仅当时取等.故答案为:.【答案点睛】本题考查基本不等式在求最小值中的应用,考查学生对基本不等式的灵活使用,难度较易.16、7【答案解析】作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值∴z最小值=F(2,1)=7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】
(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【题目详解】(1)①,当时,,,当时,②,①②得:,,适合,故;(2),.【答案点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.18、(1)降低(2)【答案解析】
(1)计算出罚金定为10元时行人闯红灯的概率,和不进行处罚时行人闯红灯的概率,求解即可;(2)闯红灯的市民有80人,其中类市民和类市民各有40人,根据分层抽样法抽出4人依次排序,计算所求的概率值.【题目详解】解:(1)当罚金定为10元时,行人闯红灯的概率为;不进行处罚,行人闯红灯的概率为;所以当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低;(2)由题可知,闯红灯的市民有80人,类市民和类市民各有40人故分别从类市民和类市民各抽出两人,4人依次排序记类市民中抽取的两人对应的编号为,类市民中抽取的两人编号为则4人依次排序分别为,,,,,,,,,,,,共有种前两位均为类市民排序为,,有种,所以前两位均为类市民的概率是.【答案点睛】本题主要考查了计算古典概型的概率,属于中档题.19、(1)见解析(2)【答案解析】
(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2)过作交于,由为的中点,结合已知有平面.则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.【题目详解】(1)证明:平面,平面,,又四边形为正方形,.又、平面,且,平面..中,,为的中点,.又、平面,,平面.平面,平面平面.(2)解:过作交于,如图为的中点,,.又平面,平面.,.所以,又、、两两互相垂直,以、、为坐标轴建立如图所示的空间直角坐标系.,,,设平面的法向量,则,即.令,则,..平面的一个法向量为.二面角的余弦值为.【答案点睛】本题考查面面垂直的证明方法,考查了空间线线、线面、面面位置关系,考查利用向量法求二面角的方法,难度一般.20、(1);(2).【答案解析】
(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解.【题目详解】解:(1)∵,且,∴,由正弦定理,∴,∵∴锐角,∴(2)∵,∴∴∴在中,由余弦定理得∴【答案点睛】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.21、(1).(2)答案见解析【答案解析】
(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【题目详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【答案点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.22、(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)利用勾股定理结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程建设项目招标3篇
- 代办户口登记委托示例3篇
- 办理证照全权委托书模板3篇
- 停车场道闸系统安装承包合同3篇
- 农村房子转让简单协议书3篇
- 建材买卖协议书格式3篇
- 工程图纸审查
- 完整工程招标与合同管理2篇
- 自动售货机行业市场发展现状与市场进出口分析考核试卷
- 羽绒制品生产安全管理规范考核试卷
- 2025至2030中国射频芯片市场趋势展望及需求前景研究报告
- 应急急救知识课件
- 文综中考试卷及答案解析
- 鼠伤寒沙门菌护理查房
- 2024年江苏省南京市中考物理试卷真题(含答案)
- K30自动生成及计算试验记录
- (完整)教育心理学-各章节重点学习笔记
- 建筑行业施工期间意外伤害免责协议
- 民兵国防知识教育教案
- 毒理学研究新技术应用-深度研究
- 变压器容量计算表
评论
0/150
提交评论