![2023学年安徽省程集中学高三第二次联考数学试卷(含解析)_第1页](http://file4.renrendoc.com/view/69d45f14e6bb2fa3f8def6c545487baa/69d45f14e6bb2fa3f8def6c545487baa1.gif)
![2023学年安徽省程集中学高三第二次联考数学试卷(含解析)_第2页](http://file4.renrendoc.com/view/69d45f14e6bb2fa3f8def6c545487baa/69d45f14e6bb2fa3f8def6c545487baa2.gif)
![2023学年安徽省程集中学高三第二次联考数学试卷(含解析)_第3页](http://file4.renrendoc.com/view/69d45f14e6bb2fa3f8def6c545487baa/69d45f14e6bb2fa3f8def6c545487baa3.gif)
![2023学年安徽省程集中学高三第二次联考数学试卷(含解析)_第4页](http://file4.renrendoc.com/view/69d45f14e6bb2fa3f8def6c545487baa/69d45f14e6bb2fa3f8def6c545487baa4.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.两圆和相外切,且,则的最大值为()A. B.9 C. D.12.若复数(为虚数单位),则()A. B. C. D.3.设为抛物线的焦点,,,为抛物线上三点,若,则().A.9 B.6 C. D.4.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于5.已知集合,,,则集合()A. B. C. D.6.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.7.已知且,函数,若,则()A.2 B. C. D.8.等比数列的前项和为,若,,,,则()A. B. C. D.9.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.10.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.11.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为()A. B. C. D.12.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.14.某中学数学竞赛培训班共有10人,分为甲、乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,若甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则x-y的值为________.15.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.16.圆关于直线的对称圆的方程为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.18.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M19.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.20.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.21.(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度℃)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为300瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?22.(10分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB=2BC,点Q为AE的中点.(1)求证:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.【题目详解】因为两圆和相外切所以,即当时,取最大值故选:A【答案点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.2、B【答案解析】
根据复数的除法法则计算,由共轭复数的概念写出.【题目详解】,,故选:B【答案点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.3、C【答案解析】
设,,,由可得,利用定义将用表示即可.【题目详解】设,,,由及,得,故,所以.故选:C.【答案点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.4、C【答案解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.5、D【答案解析】
根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【答案点睛】本题考查集合的混合运算,属基础题.6、A【答案解析】
过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【题目详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【答案点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.7、C【答案解析】
根据分段函数的解析式,知当时,且,由于,则,即可求出.【题目详解】由题意知:当时,且由于,则可知:,则,∴,则,则.即.故选:C.【答案点睛】本题考查分段函数的应用,由分段函数解析式求自变量.8、D【答案解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.9、D【答案解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【题目详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【答案点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.10、A【答案解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【题目详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【答案点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.11、B【答案解析】
根据程序框图列举出程序的每一步,即可得出输出结果.【题目详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【答案点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.12、B【答案解析】
首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.【题目详解】由题意将代入双曲线的方程,得则,由,得的周长为,设的内切圆的半径为,则,故选:B【答案点睛】本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【题目详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【答案点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.14、【答案解析】
根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【题目详解】根据茎叶图中的数据,得:甲班5名同学成绩的平均数为,解得;又乙班5名同学的中位数为73,则;.故答案为:.【答案点睛】本题考查茎叶图及根据茎叶图计算中位数、平均数,考查数据分析能力,属于简单题.15、-1【答案解析】
由题意,令即可得解.【题目详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【答案点睛】本题考查了复数的概念和运算,属于基础题.16、【答案解析】
求出圆心关于直线的对称点,即可得解.【题目详解】的圆心为,关于对称点设为,则有:,解得,所以对称后的圆心为,故所求圆的方程为.故答案为:【答案点睛】此题考查求圆关于直线的对称圆方程,关键在于准确求出圆心关于直线的对称点坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ)【答案解析】
(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.(Ⅱ)将射线θ=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.【题目详解】(Ⅰ)由所以曲线的极坐标方程为,曲线的普通方程为则曲线的极坐标方程为(Ⅱ)令,则,,则,即,所以,,故.【答案点睛】本题考查极坐标方程和参数方程与直角坐标方程的转化,以及极坐标方程中的几何意义,属基础题.18、(1)p=4;(2)OA⋅【答案解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p219、(1)见解析;(2)【答案解析】
(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌20、(Ⅰ)详见解析;(Ⅱ).【答案解析】
(Ⅰ)由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;(Ⅱ)取的中点,连接、,以、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【题目详解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中点,连接、,是正方形,易知、、两两垂直,以点为坐标原点,以、、所在直线分别为、、轴建立如图所示的空间直角坐标系,在中,,,,、、、,设平面的一个法向量,,,由,得,令,则,,.设平面的一个法向量,,,由,得,取,得,,得.,二面角为钝二面角,二面角的余弦值为.【答案点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁意向合同
- 酒店用品购销合同协议书范本
- 河南物流职业学院《经济数学下》2023-2024学年第二学期期末试卷
- 创业开店合作协议书
- 合肥职业技术学院《复变函数与离散数学》2023-2024学年第二学期期末试卷
- 广州美术学院《高等数学专业理论教学》2023-2024学年第二学期期末试卷
- 兰州石化职业技术大学《微积分Ⅱ(PM)》2023-2024学年第二学期期末试卷
- 运城学院《误差理论与MATAB数据处理》2023-2024学年第二学期期末试卷
- 九州职业技术学院《高等数学Ⅲ(二)》2023-2024学年第二学期期末试卷
- 湖南外国语职业学院《数学分析Ⅰ》2023-2024学年第二学期期末试卷
- 十大护理安全隐患
- 2025年新生儿黄疸诊断与治疗研究进展
- 广东大湾区2024-2025学年度高一上学期期末统一测试英语试题(无答案)
- 2025年四川中烟工业限责任公司招聘110人高频重点提升(共500题)附带答案详解
- 课题申报书:数智赋能高职院校思想政治理论课“金课”实践路径研究
- 公司安全生产事故隐患内部报告奖励工作制度
- H3CNE认证考试题库官网2022版
- 感统训练培训手册(适合3-13岁儿童)
- 公司章程范本(完整版)
- 厂房委托经营管理合同范本
- 《保险科技》课件-第二章 大数据及其在保险领域中的应用
评论
0/150
提交评论