检测器基本原理课件_第1页
检测器基本原理课件_第2页
检测器基本原理课件_第3页
检测器基本原理课件_第4页
检测器基本原理课件_第5页
已阅读5页,还剩93页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GeneralOverviewofDetectorSystemsDanielaCavagninoGeneralOverviewofDetectorSDetectorsclassificationUniversalTheyrespondtoeverythingelutingfromthecolumnTCDPDD(FID)SelectiveTheymaybeelementselective,structure/functionalgroupselectiveorselectivetootherpropertiesFID(verybroad

selectivity)ECDPIDPDDSpecificTheyaresoselectivetodistinguishparticularstructuresorelementsNPDFPDDetectorsclassificationUniverConcentrationvsMassdependentresponseCommonconc.dependent:TCDPIDPDDECDCommonmassdependent:FIDNPDFPDNon-DestructivevsDestructiveCommonnon-destructive:TCDPIDPDDECDCommondestructive:FIDNPDFPDDetectorsclassificationConcentrationvsMassdependenDetectorResponseCharacteristicsSensitivityDetectorefficiencytoconvertthesampleinanelectricalsignalNoiseShortterm:highfrequencybaselinefluctuationLongterm:lowfrequencybaselineperturbationDynamicRangeRangeofsampleconcentrationforwhichthedetectorcanprovideadetectablesignalvariationwithanalyteamountSelectivityTheratioofthedetectorsensitivitiesofagivencompoundoverapotentiallyinterferingcompoundMinimumDetectabilityAmountofsampleinwhichthepeakheightis3timesthenoiseheight(S/N=3)DetectorResponseCharacteristDetectorResponseCharacteristics

SensitivityandMinimumDetectabilityFIDsensitivity:S===coulomb/g=FPDsensitivityforsulfur:S=*=uV/(gS/s)2MDA===g/secRF(ResponseFactor)=MDA==gS/secpeakareasampleweightA*secgpeakareaSamountPW½Samount3NSA*gA*secpeakareaamount3NSpeakheightmassraten-1½DetectorResponseCharacterist

DynamicandLinearRangeDynamicrange:overwhich

anincrementalchangeinthe

amountofcompoundsinthe

detectorvolumeproducesa

measurableincremental

changeinthedetectorsignalLinearrange:overwhich

theresponsedeviationisless

than5%DetectorResponseCharacteristicsDynamicandLinearRangeDyFlameIonizationDetectorUniversalresponseIonizationdetectionMassdetectorDestructiveFlameIonizationDetectorUnivFlameIonizationDetectorHydrogenismixedwithgasstreamatbottomofjetandairoroxygenissuppliedaxiallyaroundthejetHydrogenflameburnsatthetip,whichalsofunctionsascathodeanditiselectricallyinsulatedfromthebodyCollectorelectrodeisabovetheburnertipFlameIonizationDetectorHydroFlameIonizationDetectorPrincipleofoperationCombustionof

organiccompoundsina

oxidizingflameCH+OCHO++e-Electricfieldbetween

thejetandthecollector

electrodeVoltage-300VCollectionofthe

ionsgeneratedinto

theflameCurrentpAAgoodcombustionstepistheprevailingfactortogetthebestperformancesFlameIonizationDetectorPrincFlameIonizationDetectorItrespondstoallorganiccompoundsexceptforformicacidResponseisgreatestwithhydrocarbonsanddecreaseswithsubstitutionSensitivityhighduetolownoiselevelNoresponsetowater,permanentgases,andinorganiccompoundssimplifiestheresolutionofcomponentsinanalysisofaqueousextractsandinairpollutionstudiesSuitableforfastandultrafastGCapplicationsFlameIonizationDetectorItrFlameIonizationDetectorTechnicalSpecifications

Operatingtemperaturelimit 450°CwithceramicjetLinearrange betterthan106

Minimumdetectableamount 3x10-12gC/sInputrange 0to10-6AInputattenuation 4steps(100-101-

102-

103)Electrodepolarizationvoltage -300VTimeconstant 6ms@63.2%Acquisitionrate upto300HzFlameIonizationDetectorTechnFlameIonizationDetectorStandardOperatingProcedure(SOP)C12C14C16AreaCounts>4000000C12=6877493C14=6790762C16=6988181FlameIonizationDetectorStandFlameIonizationDetectorMDLCalculation(C12)C12C14C16V=1.6uL@20ng/uLMassC12=32ng%C=84.7%MassC=27.1ngC12A=6877493(0.1uV*s)MDL=3N/S

S=Area(uV*s)/mass

MDL=48(uV)*27.1(ngC)/687749.3(uV*s)=0.00189ngC/s=1.89pgC/sNoise16uVFlameIonizationDetectorMDLCElectronCaptureDetectorSelectiveresponseNon-destructiveIonizationdetectorprincipleConcentration-dependentdetectorRadioactivesource63Ni(10mCiactivity)Displacedcoaxial-cylindergeometryElectronCaptureDetectorSelecPrinciplesofdetectionElectronCaptureDetector---e-e-+++-MMMABAB_+*+N2 +N2++e-*+Ar +Ar++e-+Ar*Ar*+CH4 Ar+e-+CH4+dissociative-capturemechanismAB+e- A·+B-nondissociativemechanismAB+e- AB-sidereactionsC+e- C-N2++e- neutralsAB-+N2+ neutralsPrinciplesofdetectionElectrElectronCaptureDetectorPulsedvoltage[e-]V500TTime(s)w=0.11sPULSEvoltageDCvoltageElectronCaptureDetectorPulse

ElectronCaptureDetectorConstantcurrentmethodI=Ke-]f+-Iff=constI=constElectronCaptureDetectorConsConstantcurrentmethodModulationofPulseFrequencyioncurrent=electronsconcentrationxpulsefrequencywithnosample freq.=f°withelectronegativesample freq.=fssignaloutput=fs-f°=sampleconcentrationElectronCaptureDetectorConstantcurrentmethodModulatElectronCaptureDetectorRadioactivesource: Nickel63–370MBq(10mCi)Cellvolume 450LOperatingtemperaturelimit: 400°CMinimumdetectableamount: 10fgoflindaneLineardynamicrange: 104(argon/methane)

103(nitrogen)Operationmode: constantcurrentpulse-modulatedmodeReferencecurrent: 0to3nA(0.1nAsteps)Pulseamplitude: 5to50Vneg.Pulsewidth: 0.1s(argon/methane),

0.5s,1s(nitrogen)TechnicalSpecificationsElectronCaptureDetectorRadioElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDLowresponseforalcohols,amines,phenols,aromaticsandvinyl

typefluorinatedhydrocarbonsHighresponseforhalocarboncompounds,nitroaromatics,and

conjugatedcompoundscontainingtwogroupswhichindividually

arenotstronglyelectronattractingbutbecomesowhen

connectedbyspecificbridgesResponsetowardsthehalogensdecreasesintheorderI>Br>Cl>FElectronCaptureDetectorMolecElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDMultiplesubstitutionwithsimpleelectronattractinggroupsor

atomsmayincreasethemolecularabsorptionbyanamountmuch

greaterthanexpectedofasimpleadditiveeffectTheabsorptionconferredbyasimpleelectrophoricgroupisalso

sensitivetothepositioninthemoleculeSomeinorganiccompoundsareelectronabsorbers,ascarbon

disulfide,ozoneandtheoxidesofnitrogenElectronCaptureDetectorMolecElectronCaptureDetectorRelativesensitivityEthaneBenzene 1ButanolAcetoneChlorobutane 1-102Chlorobenzene1,2-dichlorobenzeneAntracene 102-104ChloroformNitrobenzene 104-105CarbontetrachlorideDinitrophenolDiethyloxalate 105-106DihydropyridineInfluenceofdetectortemperatureDetectionlimit(x10-9g)CCl4 0.010.010.01CHCl31.00.10.05CH2Cl21000408CH2ClCH2Cl1000201

80°C227°C350°CElectronCaptureDetectorRelatElectronCaptureDetectorRelativeresponseofhalocarbonsCF3CF2CF3 1.0CF3Cl 3.3CF2=CFCl 100CF3CF2Cl 170CF2=CCl2 670CF2Cl2 3x104CHCl3 3.3x104CHCl=CCl2 6.7x104CF3Br 8.7x104CF2ClCFCl2 1.6x105CF3CHClBr 4.0x105CF3CF2CF2I 6.0x105CF2BrCF2Br 7.7x105CFCl3 1.2x106ElectronCaptureDetectorRelatg-LINDANEMDA=10fgwithS/N=3ALDRIN(15pg)HEPTACHLOR(10pg)g-LINDANE(10pg)x2x64ECDperformanceMinimumDetectableAmountg-LINDANEMDA=10fgwithSBestconditionsforECDsensitivity

ECDsensitivityisaffectedbythefollowingfactors:

Referencecurrent

Thehigheristhereferencecurrent,thegreateristhesignalresponsebut

alsothebaselinenoise.TheS/Nrationeedstobedeterminedfor

sensitivityevaluation

Ionizinggas(makeup)

TheECDisaconcentration-dependentdetector.Theloweristhemakeup

flowrate(upto15-20mL/min),thehigheristheresponse.

Argon/methaneasmakeupgasallowstooperateatlowerfrequencies

whileusinghigherreferencecurrentsetting

Detectortemperature

Forsomecompoundsthesensitivitywillincreasewiththecelltemperature

(dissociativemechanismofreaction)BestconditionsforECDsensitECDperformanceLinearityECDperformanceLinearityBestconditionsforECDlinearity

ECDlinearityisverydependantuponseveralfactors:

ECDconditions

PulseVoltage:lowestisbetter(upto15V)accordingtotheoutputfreq.

Basefrequency:mustbearound1KHz

ReferenceCurrent:itcanbereducedto0.7-0.8nAifnecessary

Ionizinggas(makeup)–Argon/methane:assurethewidest

linearityrange

Nitrogen:shouldbeusedunderclean

conditionswith0.5usofPulseWidth

Inbothcasestheflowratecanbeincreasedto40-45mL/minformaintainingalowbasefrequency

Carriergas–Hydrogen:linearrangeuptoabout100pg

Helium:sligthlybetterthanhydrogen

Nitrogen:linearrangeshifteduptoabout200pgThecompletesystemincludingthegassupplylinesandgaseshavetobeverycleantoachievealowbasefrequencyBestconditionsforECDlinearElectronCaptureDetectorStandardOperatingProcedureSOPLindaneAldrinNoise73uV(10VFS)S/N>4000Lindane=4820Aldrin=4431ElectronCaptureDetectorStandElectronCaptureDetectorLindaneAldrinNoise73uV(10VFS)V=1.6uL@30pg/uLMassLindane=48pgLindaneA=6122928(0.1uV*s)MDL=3N/S

S=Area(uV*s)/mass

MDL=219(uV)*48(pg)/612292.8(uV*s)=0.0172pg/s=17fgLindane/sMDLCalculation(Lindane)ElectronCaptureDetectorLindaElectronCaptureDetectorMultiplesimultaneousdetectionFID,NPDorFPD

stackedonECDElectronCaptureDetectorMultiAirColumneffluent+Hydrogen/MakeupHeatedsource(Rbceramicmatrix)CollectingelectrodeNitrogenPhosphorousDetector

SpecificresponsevsNandP

organiccompoundsIonization-typedetectorMassdetectorDestructiveRbceramicbeadasthermionic

ionizationsourceAirColumneffluent+Hydrogen/Sampledecomposition®Electronegativeproducts(e.g.NO2,CN,PO2)2+Hotsource®NegativeionsElectronegativespeciesNPD:detectionmechanismTID-2(BlackSource)SampledecompositiSample®Electronegativedecompositionproducts+Hotsource®NegativeionsElectronegativespecies2ENSmode:detectionmechanismTID-1(WhiteSource)Sample®ElectronegativedecoNPDmode:newglassbeadCanreplaceTID-2sourceHigherresponsefor

Phosphorouscompounds

(…buttailingpeakscanbe

observed)Loweroperatingcurrent:

extendedlifetimeSameflowratessettingas

TID-2Blos-Source(GlassBead)NPDmode:newglassbeadCanrThethermionicsourceelementisaconsumablecomponentthatmustbereplacedperiodicallyEasilyinterchangeablethermionicsourcesThermionicsourcelifetimeisstrictlydependentontheoperativeconditions.

NitrogenPhosphorousDetectorThethermionicsourceelementTechnicalSpecificationsOperatingtemperaturelimit 450°CLinearrange betterthan104

Minimumdetectableamount 5x10-2pgN/s 2x10-2pgP/sSelectivity N/C=105:1 P/C=2x105:1Inputrange 0to10-6AInputattenuation 4steps(100-101-

102-

103)Heatingcurrentsetting1.00to3.50Ain0.01stepPolarizationvoltagesetting1.0to9.9Vin0.1stepNitrogenPhosphorousDetectorTechnicalSpecificationsOperNitrogenPhosphorousDetectorStandardOperatingProcedureSOPAzobenzeneMethylparathionAreaCounts

>1500000(Azobenzene)

>3000000(Methylparathion)Azobenzene=1598004Methylparathion=4688635NitrogenPhosphorousDetectorSNitrogenPhosphorousDetectorAzobenzeneMethylparathionMDLCalculation(Azobenzene)V=1.6uL@1ng/uLMassAzobenzene=1.6ng

%N=15.3%

MassN=0.244ngazobenzeneA=1598004(0.1uV*s)MDL=3N/S

S=Area(uV*s)/mass

MDL=54(uV)*0.244(ngN)/159800.4(uV*s)=8.24E-5ngN/s=8.2E-2pgN/sNoise18uVNitrogenPhosphorousDetectorAFlamePhotometricDetectorspecificresponsevsSorP

compoundsdestructivelight-emissiondetectionmassdetectorsingle-flamedesigndualparallelconfigurationFlamePhotometricDetectorspFlamePhotometricDetectorPrincipleofoperationSulphurcompoundsH2S+HHS+H2HS+HS+H2S+SS2*S+S+MS2*S2*S2+hQuadraticresponseforsulfurcompounds!PhosphorouscompoundsPO+H+MHPO*+MPO+OH+H2HPO*+H2OHPO*HPO+hFlamePhotometricDetectorPrinFlamePhotometricDetectorChemiluminescentemissionspectraofsulfurandphosphorouscompoundsinhydrogen-richflameEmissionsignalWavelength(nm)Wavelength(nm)Sulfur(S2*)Phosphorous(HPO*)FlamePhotometricDetectorChemFlamePhotometricDetectorTheemissionofexcitedmoleculesismeasuredagainst

someflamebackgroundbymeansofnarrowbandpass

interferenceopticalfilters:S394nmP526nmSn610nmFlamePhotometricDetectorThFlamePhotometricDetectorNon-linearresponseinsulfur-selectivedetection

Intensityofthesulfuremission:

I[S]nlog[S]1/nlogI

theexponentialfactornistheoreticallyequalto2itisdependentupontheFPDoperatingconditionsitisstronglycompounddependentitisexperimentallydeterminedFlamePhotometricDetectorNon-FlamePhotometricDetectorQuenchingeffectinsulfur-selectivedetection

collisionalquenchingofS2*byCO2,CH4,andother

combustionproductsreducesthesulfurresponsehydrocarbonsareparticularlyeffectiveinquenchingthe

sulfurresponseincaseofcoelutionathighconcentrations,quenchingeffectmaybe

observed,leadingtoacurvatureofthecalibrationcurveFlamePhotometricDetectorQuenFlamePhotometricDetectorTheoptimumairflowrateshouldbeexperimentallydeterminedafter

correctsettingofthehydrogenflowrateVariationsintheair/hydrogenratioleadtodeviationsfromthe

sulfurquadraticresponseWhenoperatinginphosphorousmode,variationsintheair/hydrogen

ratiocanstronglyaffecttheresponseforcertainphosphorous

compoundswhiletiophosphatesareunaffectedThepositionofthecolumnendisespeciallycritical,sincemost

compoundscontainingsulfurandphosphorousareveryactiveThephotomultipliertubenoiseincreaseswithincreasingdetector

temperatureByincreasingtheH2/airratio,thenegativeresponseofHCdecreaseandalsotheScompoundstailingdecreasesPracticalhintsFlamePhotometricDetectorTFlamePhotometricDetectorMaintainingandtroubleshooting

ifahighnoiseandstandingcurrentisobserved,itcanbedueto:

-columnbleeding-opticalsystemnotlight-tight-toohightemperaturenearthephotomultipliertubeiflowsensitivityisobserved,itcanbedueto: -hydrogenflowratetoolow

-airflowratetoohigh -reducedopticalclarityonopticalwindowstopreventdamagingthephotomultipliertube,avoidanyexposuretolight,

evenforshortperiod,whenpoweredon.FlamePhotometricDetectorMainFlamePhotometricDetectorTechnicalSpecificationsFPDtemperaturelimit 350°CSulfurfilter 394nmPhosphorousfilter 526nmDetectionlimit Sulfur5x10-12gS/s(Parathion) Phosphorous1x10-13gP/s(Parathion)Selectivity S/hydrocarbon105 P/hydrocarbon106Linearrange 103forSulfurafterlinearization 104forPhosphorousPhotomultiplierTubeVoltageselectableto800V(low)

and900V(high)FlamePhotometricDetectorTechFlamePhotometricDetectorStandardOperatingProcedureSOP(Sfilter394nm)S/N>40S/N=73MethylparathionNoise213uVFlamePhotometricDetectorStanFlamePhotometricDetectorMethylparathionNoise213uVMDLCalculation(Sfilter394nm)V=1.6uL@1ng/uLMassMethylparathion=1.6ng

%S=12.1%

MassS=0.194ngMethylparathionA=257001(0.1uV*s)MDL=(3N/S)½

S=(Area(uV*s)/mass)*(PW½/mass)S=

25700(uV*s)/194(pgS)*1.34(s)/194(pgS)

=0.91uV/(pgS/s)2

MDL=(639(uV)/0.91)½=26.5pgS/sFlamePhotometricDetectorMethGeneralOverviewofDetectorSystemsDanielaCavagninoGeneralOverviewofDetectorSDetectorsclassificationUniversalTheyrespondtoeverythingelutingfromthecolumnTCDPDD(FID)SelectiveTheymaybeelementselective,structure/functionalgroupselectiveorselectivetootherpropertiesFID(verybroad

selectivity)ECDPIDPDDSpecificTheyaresoselectivetodistinguishparticularstructuresorelementsNPDFPDDetectorsclassificationUniverConcentrationvsMassdependentresponseCommonconc.dependent:TCDPIDPDDECDCommonmassdependent:FIDNPDFPDNon-DestructivevsDestructiveCommonnon-destructive:TCDPIDPDDECDCommondestructive:FIDNPDFPDDetectorsclassificationConcentrationvsMassdependenDetectorResponseCharacteristicsSensitivityDetectorefficiencytoconvertthesampleinanelectricalsignalNoiseShortterm:highfrequencybaselinefluctuationLongterm:lowfrequencybaselineperturbationDynamicRangeRangeofsampleconcentrationforwhichthedetectorcanprovideadetectablesignalvariationwithanalyteamountSelectivityTheratioofthedetectorsensitivitiesofagivencompoundoverapotentiallyinterferingcompoundMinimumDetectabilityAmountofsampleinwhichthepeakheightis3timesthenoiseheight(S/N=3)DetectorResponseCharacteristDetectorResponseCharacteristics

SensitivityandMinimumDetectabilityFIDsensitivity:S===coulomb/g=FPDsensitivityforsulfur:S=*=uV/(gS/s)2MDA===g/secRF(ResponseFactor)=MDA==gS/secpeakareasampleweightA*secgpeakareaSamountPW½Samount3NSA*gA*secpeakareaamount3NSpeakheightmassraten-1½DetectorResponseCharacterist

DynamicandLinearRangeDynamicrange:overwhich

anincrementalchangeinthe

amountofcompoundsinthe

detectorvolumeproducesa

measurableincremental

changeinthedetectorsignalLinearrange:overwhich

theresponsedeviationisless

than5%DetectorResponseCharacteristicsDynamicandLinearRangeDyFlameIonizationDetectorUniversalresponseIonizationdetectionMassdetectorDestructiveFlameIonizationDetectorUnivFlameIonizationDetectorHydrogenismixedwithgasstreamatbottomofjetandairoroxygenissuppliedaxiallyaroundthejetHydrogenflameburnsatthetip,whichalsofunctionsascathodeanditiselectricallyinsulatedfromthebodyCollectorelectrodeisabovetheburnertipFlameIonizationDetectorHydroFlameIonizationDetectorPrincipleofoperationCombustionof

organiccompoundsina

oxidizingflameCH+OCHO++e-Electricfieldbetween

thejetandthecollector

electrodeVoltage-300VCollectionofthe

ionsgeneratedinto

theflameCurrentpAAgoodcombustionstepistheprevailingfactortogetthebestperformancesFlameIonizationDetectorPrincFlameIonizationDetectorItrespondstoallorganiccompoundsexceptforformicacidResponseisgreatestwithhydrocarbonsanddecreaseswithsubstitutionSensitivityhighduetolownoiselevelNoresponsetowater,permanentgases,andinorganiccompoundssimplifiestheresolutionofcomponentsinanalysisofaqueousextractsandinairpollutionstudiesSuitableforfastandultrafastGCapplicationsFlameIonizationDetectorItrFlameIonizationDetectorTechnicalSpecifications

Operatingtemperaturelimit 450°CwithceramicjetLinearrange betterthan106

Minimumdetectableamount 3x10-12gC/sInputrange 0to10-6AInputattenuation 4steps(100-101-

102-

103)Electrodepolarizationvoltage -300VTimeconstant 6ms@63.2%Acquisitionrate upto300HzFlameIonizationDetectorTechnFlameIonizationDetectorStandardOperatingProcedure(SOP)C12C14C16AreaCounts>4000000C12=6877493C14=6790762C16=6988181FlameIonizationDetectorStandFlameIonizationDetectorMDLCalculation(C12)C12C14C16V=1.6uL@20ng/uLMassC12=32ng%C=84.7%MassC=27.1ngC12A=6877493(0.1uV*s)MDL=3N/S

S=Area(uV*s)/mass

MDL=48(uV)*27.1(ngC)/687749.3(uV*s)=0.00189ngC/s=1.89pgC/sNoise16uVFlameIonizationDetectorMDLCElectronCaptureDetectorSelectiveresponseNon-destructiveIonizationdetectorprincipleConcentration-dependentdetectorRadioactivesource63Ni(10mCiactivity)Displacedcoaxial-cylindergeometryElectronCaptureDetectorSelecPrinciplesofdetectionElectronCaptureDetector---e-e-+++-MMMABAB_+*+N2 +N2++e-*+Ar +Ar++e-+Ar*Ar*+CH4 Ar+e-+CH4+dissociative-capturemechanismAB+e- A·+B-nondissociativemechanismAB+e- AB-sidereactionsC+e- C-N2++e- neutralsAB-+N2+ neutralsPrinciplesofdetectionElectrElectronCaptureDetectorPulsedvoltage[e-]V500TTime(s)w=0.11sPULSEvoltageDCvoltageElectronCaptureDetectorPulse

ElectronCaptureDetectorConstantcurrentmethodI=Ke-]f+-Iff=constI=constElectronCaptureDetectorConsConstantcurrentmethodModulationofPulseFrequencyioncurrent=electronsconcentrationxpulsefrequencywithnosample freq.=f°withelectronegativesample freq.=fssignaloutput=fs-f°=sampleconcentrationElectronCaptureDetectorConstantcurrentmethodModulatElectronCaptureDetectorRadioactivesource: Nickel63–370MBq(10mCi)Cellvolume 450LOperatingtemperaturelimit: 400°CMinimumdetectableamount: 10fgoflindaneLineardynamicrange: 104(argon/methane)

103(nitrogen)Operationmode: constantcurrentpulse-modulatedmodeReferencecurrent: 0to3nA(0.1nAsteps)Pulseamplitude: 5to50Vneg.Pulsewidth: 0.1s(argon/methane),

0.5s,1s(nitrogen)TechnicalSpecificationsElectronCaptureDetectorRadioElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDLowresponseforalcohols,amines,phenols,aromaticsandvinyl

typefluorinatedhydrocarbonsHighresponseforhalocarboncompounds,nitroaromatics,and

conjugatedcompoundscontainingtwogroupswhichindividually

arenotstronglyelectronattractingbutbecomesowhen

connectedbyspecificbridgesResponsetowardsthehalogensdecreasesintheorderI>Br>Cl>FElectronCaptureDetectorMolecElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDMultiplesubstitutionwithsimpleelectronattractinggroupsor

atomsmayincreasethemolecularabsorptionbyanamountmuch

greaterthanexpectedofasimpleadditiveeffectTheabsorptionconferredbyasimpleelectrophoricgroupisalso

sensitivetothepositioninthemoleculeSomeinorganiccompoundsareelectronabsorbers,ascarbon

disulfide,ozoneandtheoxidesofnitrogenElectronCaptureDetectorMolecElectronCaptureDetectorRelativesensitivityEthaneBenzene 1ButanolAcetoneChlorobutane 1-102Chlorobenzene1,2-dichlorobenzeneAntracene 102-104ChloroformNitrobenzene 104-105CarbontetrachlorideDinitrophenolDiethyloxalate 105-106DihydropyridineInfluenceofdetectortemperatureDetectionlimit(x10-9g)CCl4 0.010.010.01CHCl31.00.10.05CH2Cl21000408CH2ClCH2Cl1000201

80°C227°C350°CElectronCaptureDetectorRelatElectronCaptureDetectorRelativeresponseofhalocarbonsCF3CF2CF3 1.0CF3Cl 3.3CF2=CFCl 100CF3CF2Cl 170CF2=CCl2 670CF2Cl2 3x104CHCl3 3.3x104CHCl=CCl2 6.7x104CF3Br 8.7x104CF2ClCFCl2 1.6x105CF3CHClBr 4.0x105CF3CF2CF2I 6.0x105CF2BrCF2Br 7.7x105CFCl3 1.2x106ElectronCaptureDetectorRelatg-LINDANEMDA=10fgwithS/N=3ALDRIN(15pg)HEPTACHLOR(10pg)g-LINDANE(10pg)x2x64ECDperformanceMinimumDetectableAmountg-LINDANEMDA=10fgwithSBestconditionsforECDsensitivity

ECDsensitivityisaffectedbythefollowingfactors:

Referencecurrent

Thehigheristhereferencecurrent,thegreateristhesignalresponsebut

alsothebaselinenoise.TheS/Nrationeedstobe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论