版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GeneralOverviewofDetectorSystemsDanielaCavagninoGeneralOverviewofDetectorSDetectorsclassificationUniversalTheyrespondtoeverythingelutingfromthecolumnTCDPDD(FID)SelectiveTheymaybeelementselective,structure/functionalgroupselectiveorselectivetootherpropertiesFID(verybroad
selectivity)ECDPIDPDDSpecificTheyaresoselectivetodistinguishparticularstructuresorelementsNPDFPDDetectorsclassificationUniverConcentrationvsMassdependentresponseCommonconc.dependent:TCDPIDPDDECDCommonmassdependent:FIDNPDFPDNon-DestructivevsDestructiveCommonnon-destructive:TCDPIDPDDECDCommondestructive:FIDNPDFPDDetectorsclassificationConcentrationvsMassdependenDetectorResponseCharacteristicsSensitivityDetectorefficiencytoconvertthesampleinanelectricalsignalNoiseShortterm:highfrequencybaselinefluctuationLongterm:lowfrequencybaselineperturbationDynamicRangeRangeofsampleconcentrationforwhichthedetectorcanprovideadetectablesignalvariationwithanalyteamountSelectivityTheratioofthedetectorsensitivitiesofagivencompoundoverapotentiallyinterferingcompoundMinimumDetectabilityAmountofsampleinwhichthepeakheightis3timesthenoiseheight(S/N=3)DetectorResponseCharacteristDetectorResponseCharacteristics
SensitivityandMinimumDetectabilityFIDsensitivity:S===coulomb/g=FPDsensitivityforsulfur:S=*=uV/(gS/s)2MDA===g/secRF(ResponseFactor)=MDA==gS/secpeakareasampleweightA*secgpeakareaSamountPW½Samount3NSA*gA*secpeakareaamount3NSpeakheightmassraten-1½DetectorResponseCharacterist
DynamicandLinearRangeDynamicrange:overwhich
anincrementalchangeinthe
amountofcompoundsinthe
detectorvolumeproducesa
measurableincremental
changeinthedetectorsignalLinearrange:overwhich
theresponsedeviationisless
than5%DetectorResponseCharacteristicsDynamicandLinearRangeDyFlameIonizationDetectorUniversalresponseIonizationdetectionMassdetectorDestructiveFlameIonizationDetectorUnivFlameIonizationDetectorHydrogenismixedwithgasstreamatbottomofjetandairoroxygenissuppliedaxiallyaroundthejetHydrogenflameburnsatthetip,whichalsofunctionsascathodeanditiselectricallyinsulatedfromthebodyCollectorelectrodeisabovetheburnertipFlameIonizationDetectorHydroFlameIonizationDetectorPrincipleofoperationCombustionof
organiccompoundsina
oxidizingflameCH+OCHO++e-Electricfieldbetween
thejetandthecollector
electrodeVoltage-300VCollectionofthe
ionsgeneratedinto
theflameCurrentpAAgoodcombustionstepistheprevailingfactortogetthebestperformancesFlameIonizationDetectorPrincFlameIonizationDetectorItrespondstoallorganiccompoundsexceptforformicacidResponseisgreatestwithhydrocarbonsanddecreaseswithsubstitutionSensitivityhighduetolownoiselevelNoresponsetowater,permanentgases,andinorganiccompoundssimplifiestheresolutionofcomponentsinanalysisofaqueousextractsandinairpollutionstudiesSuitableforfastandultrafastGCapplicationsFlameIonizationDetectorItrFlameIonizationDetectorTechnicalSpecifications
Operatingtemperaturelimit 450°CwithceramicjetLinearrange betterthan106
Minimumdetectableamount 3x10-12gC/sInputrange 0to10-6AInputattenuation 4steps(100-101-
102-
103)Electrodepolarizationvoltage -300VTimeconstant 6ms@63.2%Acquisitionrate upto300HzFlameIonizationDetectorTechnFlameIonizationDetectorStandardOperatingProcedure(SOP)C12C14C16AreaCounts>4000000C12=6877493C14=6790762C16=6988181FlameIonizationDetectorStandFlameIonizationDetectorMDLCalculation(C12)C12C14C16V=1.6uL@20ng/uLMassC12=32ng%C=84.7%MassC=27.1ngC12A=6877493(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=48(uV)*27.1(ngC)/687749.3(uV*s)=0.00189ngC/s=1.89pgC/sNoise16uVFlameIonizationDetectorMDLCElectronCaptureDetectorSelectiveresponseNon-destructiveIonizationdetectorprincipleConcentration-dependentdetectorRadioactivesource63Ni(10mCiactivity)Displacedcoaxial-cylindergeometryElectronCaptureDetectorSelecPrinciplesofdetectionElectronCaptureDetector---e-e-+++-MMMABAB_+*+N2 +N2++e-*+Ar +Ar++e-+Ar*Ar*+CH4 Ar+e-+CH4+dissociative-capturemechanismAB+e- A·+B-nondissociativemechanismAB+e- AB-sidereactionsC+e- C-N2++e- neutralsAB-+N2+ neutralsPrinciplesofdetectionElectrElectronCaptureDetectorPulsedvoltage[e-]V500TTime(s)w=0.11sPULSEvoltageDCvoltageElectronCaptureDetectorPulse
ElectronCaptureDetectorConstantcurrentmethodI=Ke-]f+-Iff=constI=constElectronCaptureDetectorConsConstantcurrentmethodModulationofPulseFrequencyioncurrent=electronsconcentrationxpulsefrequencywithnosample freq.=f°withelectronegativesample freq.=fssignaloutput=fs-f°=sampleconcentrationElectronCaptureDetectorConstantcurrentmethodModulatElectronCaptureDetectorRadioactivesource: Nickel63–370MBq(10mCi)Cellvolume 450LOperatingtemperaturelimit: 400°CMinimumdetectableamount: 10fgoflindaneLineardynamicrange: 104(argon/methane)
103(nitrogen)Operationmode: constantcurrentpulse-modulatedmodeReferencecurrent: 0to3nA(0.1nAsteps)Pulseamplitude: 5to50Vneg.Pulsewidth: 0.1s(argon/methane),
0.5s,1s(nitrogen)TechnicalSpecificationsElectronCaptureDetectorRadioElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDLowresponseforalcohols,amines,phenols,aromaticsandvinyl
typefluorinatedhydrocarbonsHighresponseforhalocarboncompounds,nitroaromatics,and
conjugatedcompoundscontainingtwogroupswhichindividually
arenotstronglyelectronattractingbutbecomesowhen
connectedbyspecificbridgesResponsetowardsthehalogensdecreasesintheorderI>Br>Cl>FElectronCaptureDetectorMolecElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDMultiplesubstitutionwithsimpleelectronattractinggroupsor
atomsmayincreasethemolecularabsorptionbyanamountmuch
greaterthanexpectedofasimpleadditiveeffectTheabsorptionconferredbyasimpleelectrophoricgroupisalso
sensitivetothepositioninthemoleculeSomeinorganiccompoundsareelectronabsorbers,ascarbon
disulfide,ozoneandtheoxidesofnitrogenElectronCaptureDetectorMolecElectronCaptureDetectorRelativesensitivityEthaneBenzene 1ButanolAcetoneChlorobutane 1-102Chlorobenzene1,2-dichlorobenzeneAntracene 102-104ChloroformNitrobenzene 104-105CarbontetrachlorideDinitrophenolDiethyloxalate 105-106DihydropyridineInfluenceofdetectortemperatureDetectionlimit(x10-9g)CCl4 0.010.010.01CHCl31.00.10.05CH2Cl21000408CH2ClCH2Cl1000201
80°C227°C350°CElectronCaptureDetectorRelatElectronCaptureDetectorRelativeresponseofhalocarbonsCF3CF2CF3 1.0CF3Cl 3.3CF2=CFCl 100CF3CF2Cl 170CF2=CCl2 670CF2Cl2 3x104CHCl3 3.3x104CHCl=CCl2 6.7x104CF3Br 8.7x104CF2ClCFCl2 1.6x105CF3CHClBr 4.0x105CF3CF2CF2I 6.0x105CF2BrCF2Br 7.7x105CFCl3 1.2x106ElectronCaptureDetectorRelatg-LINDANEMDA=10fgwithS/N=3ALDRIN(15pg)HEPTACHLOR(10pg)g-LINDANE(10pg)x2x64ECDperformanceMinimumDetectableAmountg-LINDANEMDA=10fgwithSBestconditionsforECDsensitivity
ECDsensitivityisaffectedbythefollowingfactors:
Referencecurrent
Thehigheristhereferencecurrent,thegreateristhesignalresponsebut
alsothebaselinenoise.TheS/Nrationeedstobedeterminedfor
sensitivityevaluation
Ionizinggas(makeup)
TheECDisaconcentration-dependentdetector.Theloweristhemakeup
flowrate(upto15-20mL/min),thehigheristheresponse.
Argon/methaneasmakeupgasallowstooperateatlowerfrequencies
whileusinghigherreferencecurrentsetting
Detectortemperature
Forsomecompoundsthesensitivitywillincreasewiththecelltemperature
(dissociativemechanismofreaction)BestconditionsforECDsensitECDperformanceLinearityECDperformanceLinearityBestconditionsforECDlinearity
ECDlinearityisverydependantuponseveralfactors:
ECDconditions
PulseVoltage:lowestisbetter(upto15V)accordingtotheoutputfreq.
Basefrequency:mustbearound1KHz
ReferenceCurrent:itcanbereducedto0.7-0.8nAifnecessary
Ionizinggas(makeup)–Argon/methane:assurethewidest
linearityrange
Nitrogen:shouldbeusedunderclean
conditionswith0.5usofPulseWidth
Inbothcasestheflowratecanbeincreasedto40-45mL/minformaintainingalowbasefrequency
Carriergas–Hydrogen:linearrangeuptoabout100pg
Helium:sligthlybetterthanhydrogen
Nitrogen:linearrangeshifteduptoabout200pgThecompletesystemincludingthegassupplylinesandgaseshavetobeverycleantoachievealowbasefrequencyBestconditionsforECDlinearElectronCaptureDetectorStandardOperatingProcedureSOPLindaneAldrinNoise73uV(10VFS)S/N>4000Lindane=4820Aldrin=4431ElectronCaptureDetectorStandElectronCaptureDetectorLindaneAldrinNoise73uV(10VFS)V=1.6uL@30pg/uLMassLindane=48pgLindaneA=6122928(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=219(uV)*48(pg)/612292.8(uV*s)=0.0172pg/s=17fgLindane/sMDLCalculation(Lindane)ElectronCaptureDetectorLindaElectronCaptureDetectorMultiplesimultaneousdetectionFID,NPDorFPD
stackedonECDElectronCaptureDetectorMultiAirColumneffluent+Hydrogen/MakeupHeatedsource(Rbceramicmatrix)CollectingelectrodeNitrogenPhosphorousDetector
SpecificresponsevsNandP
organiccompoundsIonization-typedetectorMassdetectorDestructiveRbceramicbeadasthermionic
ionizationsourceAirColumneffluent+Hydrogen/Sampledecomposition®Electronegativeproducts(e.g.NO2,CN,PO2)2+Hotsource®NegativeionsElectronegativespeciesNPD:detectionmechanismTID-2(BlackSource)SampledecompositiSample®Electronegativedecompositionproducts+Hotsource®NegativeionsElectronegativespecies2ENSmode:detectionmechanismTID-1(WhiteSource)Sample®ElectronegativedecoNPDmode:newglassbeadCanreplaceTID-2sourceHigherresponsefor
Phosphorouscompounds
(…buttailingpeakscanbe
observed)Loweroperatingcurrent:
extendedlifetimeSameflowratessettingas
TID-2Blos-Source(GlassBead)NPDmode:newglassbeadCanrThethermionicsourceelementisaconsumablecomponentthatmustbereplacedperiodicallyEasilyinterchangeablethermionicsourcesThermionicsourcelifetimeisstrictlydependentontheoperativeconditions.
NitrogenPhosphorousDetectorThethermionicsourceelementTechnicalSpecificationsOperatingtemperaturelimit 450°CLinearrange betterthan104
Minimumdetectableamount 5x10-2pgN/s 2x10-2pgP/sSelectivity N/C=105:1 P/C=2x105:1Inputrange 0to10-6AInputattenuation 4steps(100-101-
102-
103)Heatingcurrentsetting1.00to3.50Ain0.01stepPolarizationvoltagesetting1.0to9.9Vin0.1stepNitrogenPhosphorousDetectorTechnicalSpecificationsOperNitrogenPhosphorousDetectorStandardOperatingProcedureSOPAzobenzeneMethylparathionAreaCounts
>1500000(Azobenzene)
>3000000(Methylparathion)Azobenzene=1598004Methylparathion=4688635NitrogenPhosphorousDetectorSNitrogenPhosphorousDetectorAzobenzeneMethylparathionMDLCalculation(Azobenzene)V=1.6uL@1ng/uLMassAzobenzene=1.6ng
%N=15.3%
MassN=0.244ngazobenzeneA=1598004(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=54(uV)*0.244(ngN)/159800.4(uV*s)=8.24E-5ngN/s=8.2E-2pgN/sNoise18uVNitrogenPhosphorousDetectorAFlamePhotometricDetectorspecificresponsevsSorP
compoundsdestructivelight-emissiondetectionmassdetectorsingle-flamedesigndualparallelconfigurationFlamePhotometricDetectorspFlamePhotometricDetectorPrincipleofoperationSulphurcompoundsH2S+HHS+H2HS+HS+H2S+SS2*S+S+MS2*S2*S2+hQuadraticresponseforsulfurcompounds!PhosphorouscompoundsPO+H+MHPO*+MPO+OH+H2HPO*+H2OHPO*HPO+hFlamePhotometricDetectorPrinFlamePhotometricDetectorChemiluminescentemissionspectraofsulfurandphosphorouscompoundsinhydrogen-richflameEmissionsignalWavelength(nm)Wavelength(nm)Sulfur(S2*)Phosphorous(HPO*)FlamePhotometricDetectorChemFlamePhotometricDetectorTheemissionofexcitedmoleculesismeasuredagainst
someflamebackgroundbymeansofnarrowbandpass
interferenceopticalfilters:S394nmP526nmSn610nmFlamePhotometricDetectorThFlamePhotometricDetectorNon-linearresponseinsulfur-selectivedetection
Intensityofthesulfuremission:
I[S]nlog[S]1/nlogI
theexponentialfactornistheoreticallyequalto2itisdependentupontheFPDoperatingconditionsitisstronglycompounddependentitisexperimentallydeterminedFlamePhotometricDetectorNon-FlamePhotometricDetectorQuenchingeffectinsulfur-selectivedetection
collisionalquenchingofS2*byCO2,CH4,andother
combustionproductsreducesthesulfurresponsehydrocarbonsareparticularlyeffectiveinquenchingthe
sulfurresponseincaseofcoelutionathighconcentrations,quenchingeffectmaybe
observed,leadingtoacurvatureofthecalibrationcurveFlamePhotometricDetectorQuenFlamePhotometricDetectorTheoptimumairflowrateshouldbeexperimentallydeterminedafter
correctsettingofthehydrogenflowrateVariationsintheair/hydrogenratioleadtodeviationsfromthe
sulfurquadraticresponseWhenoperatinginphosphorousmode,variationsintheair/hydrogen
ratiocanstronglyaffecttheresponseforcertainphosphorous
compoundswhiletiophosphatesareunaffectedThepositionofthecolumnendisespeciallycritical,sincemost
compoundscontainingsulfurandphosphorousareveryactiveThephotomultipliertubenoiseincreaseswithincreasingdetector
temperatureByincreasingtheH2/airratio,thenegativeresponseofHCdecreaseandalsotheScompoundstailingdecreasesPracticalhintsFlamePhotometricDetectorTFlamePhotometricDetectorMaintainingandtroubleshooting
ifahighnoiseandstandingcurrentisobserved,itcanbedueto:
-columnbleeding-opticalsystemnotlight-tight-toohightemperaturenearthephotomultipliertubeiflowsensitivityisobserved,itcanbedueto: -hydrogenflowratetoolow
-airflowratetoohigh -reducedopticalclarityonopticalwindowstopreventdamagingthephotomultipliertube,avoidanyexposuretolight,
evenforshortperiod,whenpoweredon.FlamePhotometricDetectorMainFlamePhotometricDetectorTechnicalSpecificationsFPDtemperaturelimit 350°CSulfurfilter 394nmPhosphorousfilter 526nmDetectionlimit Sulfur5x10-12gS/s(Parathion) Phosphorous1x10-13gP/s(Parathion)Selectivity S/hydrocarbon105 P/hydrocarbon106Linearrange 103forSulfurafterlinearization 104forPhosphorousPhotomultiplierTubeVoltageselectableto800V(low)
and900V(high)FlamePhotometricDetectorTechFlamePhotometricDetectorStandardOperatingProcedureSOP(Sfilter394nm)S/N>40S/N=73MethylparathionNoise213uVFlamePhotometricDetectorStanFlamePhotometricDetectorMethylparathionNoise213uVMDLCalculation(Sfilter394nm)V=1.6uL@1ng/uLMassMethylparathion=1.6ng
%S=12.1%
MassS=0.194ngMethylparathionA=257001(0.1uV*s)MDL=(3N/S)½
S=(Area(uV*s)/mass)*(PW½/mass)S=
25700(uV*s)/194(pgS)*1.34(s)/194(pgS)
=0.91uV/(pgS/s)2
MDL=(639(uV)/0.91)½=26.5pgS/sFlamePhotometricDetectorMethGeneralOverviewofDetectorSystemsDanielaCavagninoGeneralOverviewofDetectorSDetectorsclassificationUniversalTheyrespondtoeverythingelutingfromthecolumnTCDPDD(FID)SelectiveTheymaybeelementselective,structure/functionalgroupselectiveorselectivetootherpropertiesFID(verybroad
selectivity)ECDPIDPDDSpecificTheyaresoselectivetodistinguishparticularstructuresorelementsNPDFPDDetectorsclassificationUniverConcentrationvsMassdependentresponseCommonconc.dependent:TCDPIDPDDECDCommonmassdependent:FIDNPDFPDNon-DestructivevsDestructiveCommonnon-destructive:TCDPIDPDDECDCommondestructive:FIDNPDFPDDetectorsclassificationConcentrationvsMassdependenDetectorResponseCharacteristicsSensitivityDetectorefficiencytoconvertthesampleinanelectricalsignalNoiseShortterm:highfrequencybaselinefluctuationLongterm:lowfrequencybaselineperturbationDynamicRangeRangeofsampleconcentrationforwhichthedetectorcanprovideadetectablesignalvariationwithanalyteamountSelectivityTheratioofthedetectorsensitivitiesofagivencompoundoverapotentiallyinterferingcompoundMinimumDetectabilityAmountofsampleinwhichthepeakheightis3timesthenoiseheight(S/N=3)DetectorResponseCharacteristDetectorResponseCharacteristics
SensitivityandMinimumDetectabilityFIDsensitivity:S===coulomb/g=FPDsensitivityforsulfur:S=*=uV/(gS/s)2MDA===g/secRF(ResponseFactor)=MDA==gS/secpeakareasampleweightA*secgpeakareaSamountPW½Samount3NSA*gA*secpeakareaamount3NSpeakheightmassraten-1½DetectorResponseCharacterist
DynamicandLinearRangeDynamicrange:overwhich
anincrementalchangeinthe
amountofcompoundsinthe
detectorvolumeproducesa
measurableincremental
changeinthedetectorsignalLinearrange:overwhich
theresponsedeviationisless
than5%DetectorResponseCharacteristicsDynamicandLinearRangeDyFlameIonizationDetectorUniversalresponseIonizationdetectionMassdetectorDestructiveFlameIonizationDetectorUnivFlameIonizationDetectorHydrogenismixedwithgasstreamatbottomofjetandairoroxygenissuppliedaxiallyaroundthejetHydrogenflameburnsatthetip,whichalsofunctionsascathodeanditiselectricallyinsulatedfromthebodyCollectorelectrodeisabovetheburnertipFlameIonizationDetectorHydroFlameIonizationDetectorPrincipleofoperationCombustionof
organiccompoundsina
oxidizingflameCH+OCHO++e-Electricfieldbetween
thejetandthecollector
electrodeVoltage-300VCollectionofthe
ionsgeneratedinto
theflameCurrentpAAgoodcombustionstepistheprevailingfactortogetthebestperformancesFlameIonizationDetectorPrincFlameIonizationDetectorItrespondstoallorganiccompoundsexceptforformicacidResponseisgreatestwithhydrocarbonsanddecreaseswithsubstitutionSensitivityhighduetolownoiselevelNoresponsetowater,permanentgases,andinorganiccompoundssimplifiestheresolutionofcomponentsinanalysisofaqueousextractsandinairpollutionstudiesSuitableforfastandultrafastGCapplicationsFlameIonizationDetectorItrFlameIonizationDetectorTechnicalSpecifications
Operatingtemperaturelimit 450°CwithceramicjetLinearrange betterthan106
Minimumdetectableamount 3x10-12gC/sInputrange 0to10-6AInputattenuation 4steps(100-101-
102-
103)Electrodepolarizationvoltage -300VTimeconstant 6ms@63.2%Acquisitionrate upto300HzFlameIonizationDetectorTechnFlameIonizationDetectorStandardOperatingProcedure(SOP)C12C14C16AreaCounts>4000000C12=6877493C14=6790762C16=6988181FlameIonizationDetectorStandFlameIonizationDetectorMDLCalculation(C12)C12C14C16V=1.6uL@20ng/uLMassC12=32ng%C=84.7%MassC=27.1ngC12A=6877493(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=48(uV)*27.1(ngC)/687749.3(uV*s)=0.00189ngC/s=1.89pgC/sNoise16uVFlameIonizationDetectorMDLCElectronCaptureDetectorSelectiveresponseNon-destructiveIonizationdetectorprincipleConcentration-dependentdetectorRadioactivesource63Ni(10mCiactivity)Displacedcoaxial-cylindergeometryElectronCaptureDetectorSelecPrinciplesofdetectionElectronCaptureDetector---e-e-+++-MMMABAB_+*+N2 +N2++e-*+Ar +Ar++e-+Ar*Ar*+CH4 Ar+e-+CH4+dissociative-capturemechanismAB+e- A·+B-nondissociativemechanismAB+e- AB-sidereactionsC+e- C-N2++e- neutralsAB-+N2+ neutralsPrinciplesofdetectionElectrElectronCaptureDetectorPulsedvoltage[e-]V500TTime(s)w=0.11sPULSEvoltageDCvoltageElectronCaptureDetectorPulse
ElectronCaptureDetectorConstantcurrentmethodI=Ke-]f+-Iff=constI=constElectronCaptureDetectorConsConstantcurrentmethodModulationofPulseFrequencyioncurrent=electronsconcentrationxpulsefrequencywithnosample freq.=f°withelectronegativesample freq.=fssignaloutput=fs-f°=sampleconcentrationElectronCaptureDetectorConstantcurrentmethodModulatElectronCaptureDetectorRadioactivesource: Nickel63–370MBq(10mCi)Cellvolume 450LOperatingtemperaturelimit: 400°CMinimumdetectableamount: 10fgoflindaneLineardynamicrange: 104(argon/methane)
103(nitrogen)Operationmode: constantcurrentpulse-modulatedmodeReferencecurrent: 0to3nA(0.1nAsteps)Pulseamplitude: 5to50Vneg.Pulsewidth: 0.1s(argon/methane),
0.5s,1s(nitrogen)TechnicalSpecificationsElectronCaptureDetectorRadioElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDLowresponseforalcohols,amines,phenols,aromaticsandvinyl
typefluorinatedhydrocarbonsHighresponseforhalocarboncompounds,nitroaromatics,and
conjugatedcompoundscontainingtwogroupswhichindividually
arenotstronglyelectronattractingbutbecomesowhen
connectedbyspecificbridgesResponsetowardsthehalogensdecreasesintheorderI>Br>Cl>FElectronCaptureDetectorMolecElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDMultiplesubstitutionwithsimpleelectronattractinggroupsor
atomsmayincreasethemolecularabsorptionbyanamountmuch
greaterthanexpectedofasimpleadditiveeffectTheabsorptionconferredbyasimpleelectrophoricgroupisalso
sensitivetothepositioninthemoleculeSomeinorganiccompoundsareelectronabsorbers,ascarbon
disulfide,ozoneandtheoxidesofnitrogenElectronCaptureDetectorMolecElectronCaptureDetectorRelativesensitivityEthaneBenzene 1ButanolAcetoneChlorobutane 1-102Chlorobenzene1,2-dichlorobenzeneAntracene 102-104ChloroformNitrobenzene 104-105CarbontetrachlorideDinitrophenolDiethyloxalate 105-106DihydropyridineInfluenceofdetectortemperatureDetectionlimit(x10-9g)CCl4 0.010.010.01CHCl31.00.10.05CH2Cl21000408CH2ClCH2Cl1000201
80°C227°C350°CElectronCaptureDetectorRelatElectronCaptureDetectorRelativeresponseofhalocarbonsCF3CF2CF3 1.0CF3Cl 3.3CF2=CFCl 100CF3CF2Cl 170CF2=CCl2 670CF2Cl2 3x104CHCl3 3.3x104CHCl=CCl2 6.7x104CF3Br 8.7x104CF2ClCFCl2 1.6x105CF3CHClBr 4.0x105CF3CF2CF2I 6.0x105CF2BrCF2Br 7.7x105CFCl3 1.2x106ElectronCaptureDetectorRelatg-LINDANEMDA=10fgwithS/N=3ALDRIN(15pg)HEPTACHLOR(10pg)g-LINDANE(10pg)x2x64ECDperformanceMinimumDetectableAmountg-LINDANEMDA=10fgwithSBestconditionsforECDsensitivity
ECDsensitivityisaffectedbythefollowingfactors:
Referencecurrent
Thehigheristhereferencecurrent,thegreateristhesignalresponsebut
alsothebaselinenoise.TheS/Nrationeedstobe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《过敏性紫癜曹伟》课件
- 《代商务礼仪》课件
- 《确定市场调研目标》课件
- 房屋租赁合同(2篇)
- 《硬盘使用前的处理》课件
- 2024年汽轮机油产品研发与技术转移合作协议3篇
- 2025年郑州货运从业资格证题库
- 2025年昌都货运从业资格证考试模拟考试题库下载
- 2024年混凝土构件生产及安装合同
- 2025年济南道路运输从业人员从业资格考试
- 监理公司各部门职责
- 253种中药材粉末显微鉴别主要特征
- 论辛弃疾词作的愁情主题及其审美价值
- 新形势下我国保险市场营销的现状、问题及对策
- LTE无线网络优化PPT课件
- 动态血压监测在社区高血压患者管理的意义
- 管道中英文对照表
- 240灯控台_说明书
- 新形势下加强市场监管局档案管理工作的策略
- 例行检查和确认检验程序
- 上海旅游资源基本类型及其旅游区布局特点(共5页)
评论
0/150
提交评论