河南省许汝平九校联盟2023学年高考数学四模试卷(含解析)_第1页
河南省许汝平九校联盟2023学年高考数学四模试卷(含解析)_第2页
河南省许汝平九校联盟2023学年高考数学四模试卷(含解析)_第3页
河南省许汝平九校联盟2023学年高考数学四模试卷(含解析)_第4页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为虚数单位,复数,则其共轭复数()A. B. C. D.2.已知无穷等比数列的公比为2,且,则()A. B. C. D.3.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.4.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()A. B.3 C. D.25.设函数,则使得成立的的取值范围是().A. B.C. D.6.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.7.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.88.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲 B.乙 C.丙 D.丁9.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间10.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.11.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.12.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则__________.14.若,则的展开式中含的项的系数为_______.15.函数的最小正周期为________;若函数在区间上单调递增,则的最大值为________.16.的展开式中的常数项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.18.(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份—20140需求量—2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.19.(12分)已知函数.(1)解不等式:;(2)求证:.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.21.(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,,均为正实数,且满足.证明:.22.(10分)已知函数,其中.(1)①求函数的单调区间;②若满足,且.求证:.(2)函数.若对任意,都有,求的最大值.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】

先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【题目详解】由,所以其共轭复数.故选:B.【答案点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.2、A【答案解析】

依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【题目详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,,解得,所以,,故选A。【答案点睛】本题主要考查无穷等比数列求和公式的应用。3、C【答案解析】

根据程序框图依次计算得到答案.【题目详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【答案点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.4、A【答案解析】

设,直线的方程为,联立方程得到,,根据向量关系化简到,得到离心率.【题目详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,,整理得,故该双曲线的离心率.故选:.【答案点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.5、B【答案解析】

由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【题目详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【答案点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.6、A【答案解析】

因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【题目详解】定义在上的函数的周期为4,当时,,,,.故选:A.【答案点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.7、A【答案解析】

由垂心的性质,得到,可转化,又即得解.【题目详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【答案点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.8、C【答案解析】

分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【题目详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【答案点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.9、D【答案解析】

可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【题目详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【答案点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题10、B【答案解析】

利用等差数列性质,若,则求出,再利用等差数列前项和公式得【题目详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【答案点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.11、A【答案解析】

对复数进行乘法运算,并计算得到,从而得到虚部为2.【题目详解】因为,所以z的虚部为2.【答案点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.12、A【答案解析】

函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【题目详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.【答案点睛】本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】

由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【题目详解】,得,在等式两边平方得,解得.故答案为:.【答案点睛】本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.14、【答案解析】

首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【题目详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【答案点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.15、【答案解析】

直接计算得到答案,根据题意得到,,解得答案.【题目详解】,故,当时,,故,解得.故答案为:;.【答案点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.16、160【答案解析】

先求的展开式中通项,令的指数为3即可求解结论.【题目详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【答案点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【答案解析】

(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【题目详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【答案点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18、(1)见解析;(2)能够满足.【答案解析】

(1)根据表中数据,结合以“年份—2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【题目详解】(1)由所给数据和已知条件,对数据处理表格如下:年份—2014024需求量—25701929(2)由题意可知,变量与之间具有线性相关关系,由(1)中表格可得,,,,.由上述计算结果可知,所求回归直线方程为,利用回归直线方程,可预测2020年的粮食需求量为:(万吨),因为,故能够满足该地区的粮食需求.【答案点睛】本题考查了线性回归直线的求法及预测应用,属于基础题.19、(1);(2)见解析.【答案解析】

(1)代入得,分类讨论,解不等式即可;(2)利用绝对值不等式得性质,,,比较大小即可.【题目详解】(1)由于,于是原不等式化为,若,则,解得;若,则,解得;若,则,解得.综上所述,不等式解集为.(2)由已知条件,对于,可得.又,由于,所以.又由于,于是.所以.【答案点睛】本题考查了绝对值不等式得求解和恒成立问题,考查了学生分类讨论,转化划归,数学运算能力,属于中档题.20、(1)(2)【答案解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.21、(1);(2)见解析【答案解析】

(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论