版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
序列相关的检验及修正例题:中国居民总量消费函数数据:年份GDPCONSCPITAXGDPCXY19783605.61759.146.21519.287802.66678.93806.819794092.62011.547.07537.828694.77552.14273.419804592.92331.250.62571.709073.37943.94605.319815008.82627.951.90629.899650.98437.25063.419825590.02902.952.95700.0210557.19235.15482.319836216.23231.154.00775.5911511.510075.25983.519847362.73742.055.47947.3513273.311565.46746.019859076.74687.460.652040.7914965.711600.87728.6198610508.55302.164.572090.3716274.613037.28211.4198712277.46126.169.302140.3617716.314627.88840.0198815388.67868.182.302390.4718698.215793.69560.3198917311.38812.697.002727.4017846.715034.99085.2199019347.89450.9100.002821.8619347.816525.99450.9199122577.410730.6103.422990.1721830.818939.510375.7199227565.213000.1110.033296.9125052.422056.111815.1199336938.116412.1126.204255.3029269.525897.613004.8199450217.421844.2156.655126.8832057.128784.213944.6199563216.928369.7183.416038.0434467.531175.415467.9199674163.633955.9198.666909.8237331.933853.717092.5199781658.536921.5204.218234.0439987.535955.418080.2199886531.639229.3202.599262.8042712.738140.519363.9199991125.041920.4199.7210682.5845626.440277.620989.6200098749.045854.6200.5512581.5149239.142965.622864.42001108972.449213.2201.9415301.3853962.846385.624370.22002120350.352571.3200.3217636.4560079.051274.926243.72003136398.856834.4202.7320017.3167281.057407.128034.52004160280.463833.5210.6324165.6876095.764622.730306.02005188692.171217.5214.4228778.5488001.274579.633214.02006221170.580120.5217.6534809.72101617.585624.136811.61、建立回归模型,模型的OLS估计Yt 0 1Xtt(1)录入数据打开EViews6,点“Fil”“New”“Workfil”
选择“Dated-regularfrequdbcy在Frequency后选择“Annual”,在Startda后输入1978,在Enddata后输入2006,点击“ok”在命令行输入:DATAXY,回车将数据复制粘贴到Group中的表格中:
Group:UKTITLEDTorkfile:KUL工EKLMTCGUAH::…口回区“小网.Pm匚,口用曰匚t.[PrinfNamsFfbbwe.Defaultv[5口HTrari印口5e[Edit+卜5mpl+/-6678.9obsXY19706678.9003306.00019797552.1004273.40019007943.9004605.30019010437.2005063.40019029235.1005482.300190310075.205983.500190411565.406746.000190511600.007720.600190613037.200211.400190714627.000040.000190015793.609560.300190915034.909085.200199016525.909450.900199110939.5010375.70199222056.1011815.10199325397.6013004.00199423784.2013944.601995^11754n154R7qn1996<|Hl>l(2)估计回归方程在命令行输入命令:LSYCX,回车或者在主菜单中点“Quick” “EstimateEquation在Specificati雨输入丫CX,“确定”。得到如下输出:Equation:UNTITLEDTorkfile:XULIEXIAHG...国回区UiswPm,口市以Prin;NmmsFrsBEs]DependentVariable:YMethod:LeastSquaresDate:06/03/12Time:18:13Sample:19782006Includedobservations:29CoefficientStd.Errort-StatisticProb.C2091.232334.9917 6.2427070.0000X0.4375270.009297 47.050370.0000R-squared0.987955Meandependentvar14855.72AdjustedR-squared0.987509S.D.dependentvar9472.093S.E.ofregression1053.650Akaikeinfocriterion16,83385Sumsquaredresid30259949Schwarzcriterion16,92014Loglikelihood-242.0900Hannan-Quinncriter.16,86330F-statistic2214.537Durbin-Watsonstat0.277132Prob(F-statistic)0.000000写出估计结果:Y2091.280.4375X(6.243) (47.059)R2=0.9880R20.9875 F=2214.537 D.W.=0.2772、序列相关的检验(1)图示检验法作残差序列的时序图:保存残差虚列:GENRE=RESID从图上可以看出,模型的最小二乘残差开始连续几期小于0,接着连续几期都大于0,这种模式的残差意味着模型可能存在正的序列相关性。做©和6的关系图:tt1SCATE(-1)E
2,400--1,600-4,0002,000-1,600-1,200-800-400-0--400--800--1,200-从上面的散点图可以看出,2,400--1,600-4,0002,000-1,600-1,200-800-400-0--400--800--1,200-从上面的散点图可以看出,et和21之间可以拟合一个线性模型:e=et11t表明模型存在正的序列相关性。且回归直线的斜率为正(>0),表明模型存在正的序列相关性。34,(2)DW检验34,由OLS估计的结果可知:D.W.=0.277。查DW分布的临界值表,k=2,n=29时,dL=1.,=1.48,显然0<0.277<%,因此模型存在一阶正的自相关。(3)回归检验法拟合模型:e=e,并运用OLS估计模型:LSEE(-1)tt1t得到如下结果:OEquation:UNTITLEDWorkfile:XULIEX1ANGGUAN::U...且亘匿|始已神||P「0d|口bject|p「int||Name||F「Ee花|EstimateForecastStats||ResidsDependentVariable:EMethod:LeastSquares□ate:11/07/12Time:21:17Sample(adjusted):19792006Includedobservations:28afteradjustmentsCoefficientStd.Errort-StatisticProb.E(-1)0.94S9720.116460 8.1404910.0000R-squared0.710391Meandependentvar43,09574AdjustedR-squared0710391S.D.dependentvar1031.932S.E.ofregression555.3373Akaikeinfocriterion15,51209Sumsquaredresid8326787.Schwarzcriterion15,55967Loglikelihood-216.1693Hannan-Quinncriter.15,52663□urbin-Watsonstat0.576494写出回归结果:e0.949et t1(8.148)回归系数的t统计量为8.148伴随概率P=0.0000<=0.05,表明原模型存在一阶序列相关。拟合模型:e=ee ,并运用OLS估计模型:LSEE(-1)E(-2)t1t1 2t2t得到如下结果:DependentVariable:EMethod:LeastSquaresDate:11/07/12Time:21:24Sample(adjusted):19802006Includedobservations:27afteradjustmentsCoefficientStd.Errort-StatisticProb.1.6586910.152243 10.095000.0000-0.8643560.155255 -5.5673450.0000R-squared0864051Meandependentvar86,25222AdjustedR-squared0.858613S.D.dependentvar1025.517S.E.ofregression385.6093Akaikeinfocriterion1481372Sumsquaredresid3717374.SchwarzcriterionU.91470Loglikelihood-198.0527Hannan-Quinncriter.14,84726□urbin-Watsonstat2.317512写出回归结果:z 〜 〜e 1.659e 0.864et t1 t2(10.895)(-5.567)回归系数:1和:2的t统计量分别为10.895,-5.567相应的伴随概率P=0.0000<=0.05,
表明原模型存在二阶序列相关。,并运用OLS估计模型:LSEE(-1)E(-2)t,并运用OLS估计模型:LSEE(-1)E(-2)t£(-3)回车,得到如下结果:DependentVariable:EMethod:LeastSquares□ate:11/07/12Time:2136Sample[adjusted):19812006Includedobservations:26afteradjustmentsCoefficientStd.Errort-StatisticProb.E(-1)14953670.205421 7.2795340.0000E(-2)-0.4-741000.371327 -1.2767720.2144E『3)-0.2060350.241900 -1.1824510.2491R-squared0.867062Meande口endentva「126.5562AdjustedR-squared0.855502S.D.dependentvar1023.787S.E.ofregression3S9.1710Akaikeinfocriterion1437408Sumsquared「esid3433444.Schwarzcriterion15,01925Loglikelihood-1903631Hannan-Quinncriter.14,91583Durbin-Watsonstat2.170417写出回归结果:1.49510.474(7.280)(-1.277) (-1.18)回归系数:1的t统计量为7.280相应的伴随概率P1=0.0000<=0.05表明:1显著不为零,但P2和0的t统计量分别为-1.277-1.182相应的伴随概率P2=0.2144,P3=0.2491,均大于=0.05表明原模型不存在三阶序列相关。综上,原模型有二阶序列相关。(4)LM检验首先采用OLS估计模型,在弹出的Equation窗口,点ViewResidualTestsSerialcorrelationLMTest♦弹出下面的对话框:点“OK”得到下面的输出:Breusch-GodfreySerialCorrelationLMTestF-statistic55,34401Prob.F(2,25)0.0000Obs*R-squared2365636Prob.Chi-Square{2}0.0000TestEquation:□ependentVariable:RESIDMethod:LeastSquaresDate:11/07/12Time:21:47Sample:19732006Includedobservations:29Presamplemissingvaluelaggedresidualssettozero.CoefficientStd.Errort-StatisticProbc100.2419170.94-010.5864150.5629X-0.0051020.005481-0.93072903609RESIDf-1)14531020.1793258.1589260.0000RESID(-2)-0.6124870.224948-2.7227930.0116R-squared0815754Meandependentvar-1.69E-12AdjustedR-squared0.7936US.D.dependentvar1039.573S.E.ofregression472.2406Akaikeinfocriterion15,23030Sumsquaredresid5575230.Schwarzcriterion15-46889Loglikelihood-217.5643Hannan-Quinncriter.15.33936F-statistic36,39601Durbin-Watsonstat1.946335ProbfF-statistic}0.000000从上面的输出可知:LM=23.65686,Prob.Chi-Square(2)=0.0Q0小于=0.05,且辅助回归中RESID(-1)和RESID(-2)的系数均显著不为0(对应t统计量的P值均小于0.05),说明模型具有2节序列相关。在Equatior窗口,点ViewResidualTestSSerialcolationLMTest,••在弹出的对话框里将滞后阶数改为3:点“OK”得到下面的输出:
Breusch-GodfreySerialCorrelationLMTest:F-statistic33,03667Prob.F(3,24)0.0000Obs^R-squared23,96054Prob.Chi-Square(3)0.0000TestEquation:DependentVariable:RESIDMethod:LeastSquares□ate:11/07/12Time:21:52Sample:19782006Includedobservations:29Presamplemissingvaluelaggedresidualssettozero.CoefficientStd.Errort-StatisticProb.C29,00937179.4397 0.1616210.3730X-0.0023040.005910 -0.3399030.7000RESID(-1)1.3901960.201013 6.7168020.0000RESID(-2)-0.2997830.342530 -0.37520S0.3901RESID(-3}-0.3063710.254757 -1.2025980.2409R-squared0.326225Meandependentvar-1.69E-12AdjustedR-squared0.79726SS.D.dependentvar1039.573S.E.ofregression468.0815Akaikeinfocriterion15,29075Sumsquaredresid5253408.Schwarzcriterion15,52649Loglikelihood-216.7158Hannan-Quinncriter.1536458F-statistic23,52750Durbin-Watsonstat1.864232Prob(F-statistic}0.000000这时,LM=23.96054,Prob.Chi-Square(2)=0.0Q小于=0.05,但辅助回归中RESID(-2)和RESID(-3)的系数不显著(对应t统计量的P值均大于0.05),说明模型仅存在2阶序列相关,不具有3阶的序列相关。3、序列相关的修正(1)广义差分法已知模型具有2阶序列相关,在命令行输入命令:LSYCXAR(1)AR⑵回车得到下面的输出:DependentVariable:YMethod:LeastSquaresDate:11/07/12Time:21:56Sample(adjusted):19802006Includedobservations:27afteradjustmentsConvergenceachievedafter64iterationsCoefficientStd.Errort-StatisticProb.C13034S.32636223. 0.0494450.9610X0.2795940.064382 4.3092590.0003AR[1)1.3902020.213013 6.5263850.0000AR[2)-0.392179口.233359 -1.6305830.1064R-squared0.990829Meandependentvar15656.87AdjustedR-squared0.993676S.D.dependentvar9324.872S.E.ofregression3393329Akaikeinfocriterion14,62779Sumsquaredresid2648377.Schwarzcriterion14,31977Loglikelihood-193.4752Hannan-Quinncriter.14,63488F-statistic6536974□urbin-Watsonstat1.951415Prob(F-statistic)0.000000InvertedARRoots1.0039写出修正后的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业品牌形象设计与传播咨询合同汇编2篇
- 演讲口才完整课程设计
- 月影特效课程设计
- 2024年整栋文化旅游景点购买合同协议书3篇
- 甜品网站课程设计目标
- 橡胶块压沉机构课程设计
- 2024年电子商务物流配送合同6篇
- 2024内墙腻子施工劳务派遣与人才培养合同范本3篇
- 师德师风课程设计
- 文旅产业课程设计原则
- 汽车制造业的柔性生产与敏捷制造
- 五年级上册小数乘除练习300道及答案
- 不动产抵押登记手续
- 公安机关执法执勤规范用语
- 无人机技术在消防救援中的作用与局限
- 超越指标:存量时代降本增效的利器
- 一年级道德与法治无纸笔期末检测质量分析
- 形式逻辑期末考试含答案
- 自媒体账号运营的用户画像分析技巧
- 医院门窗工程施工方案与施工方法
- 短视频实习运营助理
评论
0/150
提交评论