2022-2023学年吉林省农安县三盛玉中学九年级数学第一学期期末监测模拟试题含解析_第1页
2022-2023学年吉林省农安县三盛玉中学九年级数学第一学期期末监测模拟试题含解析_第2页
2022-2023学年吉林省农安县三盛玉中学九年级数学第一学期期末监测模拟试题含解析_第3页
2022-2023学年吉林省农安县三盛玉中学九年级数学第一学期期末监测模拟试题含解析_第4页
2022-2023学年吉林省农安县三盛玉中学九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,重庆欢乐谷的摩天轮是西南地区最高的摩天轮,号称“重庆之限”.摩天轮是一个圆形,直径AB垂直水平地面于点C,最低点B离地面的距离BC为1.6米.某天,妈妈带着洋洋来坐摩天轮,当她站在点D仰着头看见摩天轮的圆心时,仰角为37º,为了选择更佳角度为洋洋拍照,妈妈后退了49米到达点D’,当洋洋坐的桥厢F与圆心O在同一水平线时,他俯头看见妈妈的眼睛,此时俯角为42º,已知妈妈的眼睛到地面的距离为1.6米,妈妈两次所处的位置与摩天轮在同一平面上,则该摩天轮最高点A离地面的距离AC约是()(参考数据:sin37º≈0.60,tan37º≈0.75,sin42º≈0.67,tan42º≈0.90)A.118.8米 B.127.6米 C.134.4米 D.140.2米2.关于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定3.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-) D.P(-2,3),Q(-3,-2)4.下列各点中,在反比例函数图像上的是()A. B. C. D.5.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是()A. B. C. D.6.随机抛掷一枚质地均匀的骰子一次,下列事件中,概率最大的是()A.朝上一面的数字恰好是6 B.朝上一面的数字是2的整数倍C.朝上一面的数字是3的整数倍 D.朝上一面的数字不小于27.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是()A.1张 B.4张 C.9张 D.12张8.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为()A.2 B.3 C.4 D.59.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.10.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣411.在△中,=90°,=4,那么的长是().A.5 B.6 C.8 D.912.如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:8二、填空题(每题4分,共24分)13.已知一次函数y=ax+b与反比例函数y=的图象相交于A(4,2),B(-2,m)两点,则一次函数的表达式为____________.14.如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.15.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.16.如图,直线与轴交于点,与轴交于点,点在轴的正半轴上,,过点作轴交直线于点,若反比例函数的图象经过点,则的值为_________________.17.已知二次根式有意义,则满足条件的的最大值是______.18.两个相似三角形的面积比为,其中较大的三角形的周长为,则较小的三角形的周长为__________.三、解答题(共78分)19.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?20.(8分)如图,无人机在空中处测得地面、两点的俯角分别为60〫、45〫,如果无人机距地面高度米,点、、在同水平直线上,求、两点间的距离.(结果保留根号)21.(8分)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD(2)求证:DE为⊙O的切线22.(10分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.23.(10分)如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).(1)求证:AC是⊙O的切线;(2)若点E恰好是AO的中点,求的长;(3)若CF的长为,①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.24.(10分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.25.(12分)如图,四边形ABCD内接于⊙O,∠BOD=140°,求∠BCD的度数.26.如图,双曲线与直线相交于点(点在第一象限),其横坐标为2.(1)求的值;(2)若两个图像在第三象限的交点为,则点的坐标为;(3)点为此反比例函数图像上一点,其纵坐标为3,过点作,交轴于点,直接写出线段的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】连接EB,根据已知条件得到E′,E,B在同一条直线上,且E′B⊥AC,过F做FH⊥BE于H,则四边形BOFH是正方形,求得BH=FH=OB,设AO=OB=r,解直角三角形即可得到结论.【详解】解:连接EB,∵D′E′=DE=BC=1.6∴E′,E,B在同一条直线上,且E′B⊥AC,过F做FH⊥BE于H,则四边形BOFH是正方形,∴BH=FH=OB,设AO=OB=r,∴FH=BH=r,∵∠OEB=37°,∴tan37°=,∴BE=,∴EH=BD-BH=,∵EE′=DD′=49,∴E′H=49+,∵∠FE′H=42°,∴tan42°=,解得r≈63,∴AC=2×63+1.6=127.6米,故选:B.【点睛】本题考查了解直角三角形——仰角与俯角问题,正方形的判定和性质,正确的作出辅助线是解题的关键.2、A【解析】试题解析:△=b2-4ac=m2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以方程有两个不相等的实数根.故选:A.点睛:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3、C【解析】根据反比函数的解析式y=(k≠0),可得k=xy,然后分别代入P、Q点的坐标,可得:-2×(-3)=6≠3×(-2),故不在同一反比例函数的图像上;2×(-3)=-6≠2×3,故不正确同一反比例函数的图像上;2×3=6=(-4)×(-),在同一反比函数的图像上;-2×3≠(-3)×(-2),故不正确同一反比例函数的图像上.故选C.点睛:此题主要考查了反比例函数的图像与性质,解题关键是求出函数的系数k,比较k的值是否相同来得出是否在同一函数的图像上.4、C【分析】把每个点的坐标代入函数解析式,从而可得答案.【详解】解:当时,故A错误;当时,故B错误;当时,故C正确;当时,故D错误;故选C.【点睛】本题考查的是反比例函数图像上点的坐标特点,掌握以上知识是解题的关键.5、B【分析】根据反比例函数关系式,把-2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,∵,∴.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.6、D【解析】根据概率公式,逐一求出各选项事件发生的概率,最后比较大小即可.【详解】解:A.朝上一面的数字恰好是6的概率为:1÷6=;B.朝上一面的数字是2的整数倍可以是2、4、6,有3种可能,故概率为:3÷6=;C.朝上一面的数字是3的整数倍可以是3、6,有2种可能,故概率为:2÷6=;D.朝上一面的数字不小于2可以是2、3、4、5、6,有5种可能,,故概率为:5÷6=∵<<<∴D选项事件发生的概率最大故选D.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.7、D【分析】设箱中卡的总张数可能是x张,则绿卡有(x-3)张,根据抽到绿卡的概率稳定在75%附近,利用概率公式列方程求出x的值即可得答案.【详解】设箱中卡的总张数可能是x张,∵箱子中有3张红卡和若干张绿卡,∴绿卡有(x-3)张,∵抽到绿卡的概率稳定在75%附近,∴,解得:x=12,∴箱中卡的总张数可能是12张,故选:D.【点睛】本题考查等可能情形下概率的计算,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.8、B【解析】试题分析:∵PC⊥x轴,PD⊥y轴,∴S矩形PCOD=4,S△AOC=S△BOD=×1=,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=4--=1.故选B.考点:反比例函数系数k的几何意义.9、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【点睛】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.10、B【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中bx叫一次项,系数是b,可直接得到答案.【详解】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.【点睛】此题考查的是求一元一次方程一般式中一次项系数,掌握一元一次方程的一般形式和一次项系数的定义是解决此题的关键.11、B【分析】根据余弦值等于邻边比斜边即可得到答案.【详解】在△中,=90°,=4,,∵,∴,∴AB=6,故选:B.【点睛】此题考查三角函数,熟记余弦值的边的比的关系是解题的关键.12、B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=1,OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【详解】过A作AF⊥OB于F,如图所示:∵A(1,1),B(6,0),∴AF=1,OF=1,OB=6,∴BF=1,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,∴∠OCE=∠DEB,∴△CEO∽△EDB,∴==,∵OE=,∴BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,则,,∴6b=10a﹣5ab①,24a=10b﹣5ab②,②﹣①得:24a﹣6b=10b﹣10a,∴,即AC:AD=2:1.故选:B.【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB是等边三角形是解题的关键.二、填空题(每题4分,共24分)13、y=x-1【详解】解:把(4,1)代入,得k=8,∴反比例函数的表达式为,把(-1,m)代入,得m=-4,∴B点的坐标为(-1,-4),把(4,1),(-1,-4)分别代入y=ax+b,得解得,∴直线的表达式为y=x-1.故答案为:y=x-1.14、-1【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出比例式,再由tan∠CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F.∵由直线AB与反比例函数y的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE•OE=2,CF•OF=|k|,∴|k|=CF•OF=2AE×2OE=4AE×OE=1,∴k=±1.∵点C在第二象限,∴k=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CF•OF=1.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.15、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【点睛】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.16、1【解析】先求出直线y=x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.【详解】解:令x=0,得y=x+2=0+2=2,

∴B(0,2),

∴OB=2,

令y=0,得0=x+2,解得,x=-6,

∴A(-6,0),

∴OA=OD=6,

∵OB∥CD,

∴CD=2OB=4,

∴C(6,4),

把c(6,4)代入y=(k≠0)中,得k=1,

故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.17、【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可求出x的最大值【详解】∵二次根式有意义;∴3-4x≥0,解得x≤,∴x的最大值为;故答案为.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.18、1【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三角形的周长为∴较小的三角形的周长为故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.三、解答题(共78分)19、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y=kx+b,根据题意得:,解得:k=-1,b=8,所以,y与x的函数关系式为y=-x+8;(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,因为a=-1<0,所以当x=6时,W最大为4万元.当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.点睛:要求最值,一般讲二次函数解析式写成顶点式.20、A、B两点间的距离为100(1+)米【分析】如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.【详解】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在中,∵=,∴AD==100,在中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.21、(1)证明见解析;(2)证明见解析.【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90°即可.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE,∴DE是⊙O的切线.考点:切线的判定.22、不公平【解析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【详解】这个游戏对双方不公平.理由:列表如下:

12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:,则小刚获胜的概率为:,∵≠,∴这个游戏对两人不公平.【点睛】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23、(1)见解析;(2);(3)①r1=1,;②△BFF'与△DEF'的面积比为或【分析】(1)连结,证明,得出,则结论得证;(2)求出,,连结,则,由弧长公式可得出答案;(3)①如图3,过作于,则,四边形是矩形,设圆的半径为,则.,证明,由比例线段可得出的方程,解方程即可得出答案;②证明,当或时,根据相似三角形的性质可得出答案.【详解】解:(1)连结DO,∵BD平分∠ABC,∴∠CBD=∠ABD,∵DO=BO,∴∠ODB=∠OBD,∴∠CBD=∠ODB.∴DO∥BC,∵∠C=90°,∴∠ADO=90°,∴AC是⊙O的切线;(2)∵E是AO中点,∴AE=EO=DO=BO=,∴sin∠A=,∴∠A=30°,∠B=60°,连结FO,则∠BOF=60°,∴=.(3)①如图3,连结OD,过O作OM⊥BC于M,则BM=FM,四边形CDOM是矩形设圆的半径为r,则OA=5﹣r.BM=FM=r﹣,∵DO∥BC,∴∠AOD=∠OBM,而∠ADO=90°=∠OMB,∴△ADO∽△OMB,∴,即,解之得r1=1,.②∵在(1)中∠CBD=∠ABD,∴DE=DF,∵BE是⊙O的直径,∴∠BDE=90°,而F、F'关于BD轴对称,∴BD⊥FF',BF=BF',∴DE∥FF',∴∠DEF'=∠BF'F,∴△DEF'∽∠BFF',当r=1时,AO=4,DO=1,BO=1,由①知,,,,,,,与的面积之比,同理可得,当时.时,与的面积比.与的面积比为或.【点睛】本题是圆的综合题,考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论