2022-2023学年丽江市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年丽江市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年丽江市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年丽江市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年丽江市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一元二次方程x2﹣2x﹣1=0的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1+,x2=1﹣ D.x1=1+,x2=1﹣2.如图,在中,,,折叠使得点落在边上的点处,折痕为.连接、,下列结论:①△是等腰直角三角形;②;③;④.其中正确的个数是()A.1 B.2 C.3 D.43.在一个有10万人的小镇,随机调查了1000人,其中有120人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A. B. C. D.4.函数与()在同一坐标系中的图象可能是()A. B. C. D.5.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>06.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.3 C. D.7.若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm8.下列事件为必然事件的是()A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B.三角形的内角和为180°C.打开电视机,任选一个频道,屏幕上正在播放广告D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上9.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30° B.45° C.60° D.75°10.下列事件是必然事件的为()A.明天早上会下雨 B.任意一个三角形,它的内角和等于180°C.掷一枚硬币,正面朝上 D.打开电视机,正在播放“义乌新闻”11.如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:①②③④关于的方程有一个根为其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个12.下列函数的图象,不经过原点的是()A. B.y=2x2 C.y=(x﹣1)2﹣1 D.二、填空题(每题4分,共24分)13.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.14.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.15.如图,、是两个等边三角形,连接、.若,,,则__________.16.如图,原点O为平行四边形A.BCD的对角线A.C的中点,顶点A,B,C,D的坐标分别为(4,2),(,b),(m,n),(-3,2).则(m+n)(+b)=__________.17.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为

________.18.已知是方程的一个根,则代数式的值为__________.三、解答题(共78分)19.(8分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.(1)在方格纸中画出以为一边的锐角等腰三角形,点在小正方形的顶点上,且的面积为;(2)在方格纸中画出以为一边的直角三角形,点在小正方形的顶点上,且的面积为5;(3)连接,请直接写出线段的长.20.(8分)因2019年下半年猪肉大涨,某养猪专业户想扩大养猪场地,但为了节省材料,利用一面墙(墙足够长)为一边,用总长为120的材料围成了如图所示①②③三块矩形区域,而且这三块矩形区域的面积相等,设的长度为(),矩形区域的面积().(1)求与之间的函数表达式,并注明自变量的取值范围.(2)当为何值时,有最大值?最大值是多少?21.(8分)如图,为的直径,为上一点,,延长至点,使得,过点作,垂足在的延长线上,连接.(1)求证:是的切线;(2)当时,求图中阴影部分的面积.22.(10分)如图1,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.(1)求该抛物线对应的二次函数关系式;(2)当点F到直线AD距离最大时,求点F的坐标;(3)如图2,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.23.(10分)如图,已知一次函数的图象交反比例函数的图象于点和点,交轴于点.(1)求这两个函数的表达式;(2)求的面积;(3)请直接写出不等式的解集.24.(10分)如图,已知AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若,DE=6,求EF的长.25.(12分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.26.已知:二次函数,求证:无论为任何实数,该二次函数的图象与轴都在两个交点;

参考答案一、选择题(每题4分,共48分)1、C【分析】利用一元二次方程的公式法求解可得.【详解】解:∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,则x==1±,即x1=1+,x2=1﹣,故选:C.【点睛】本题考查了一元二次方程的解法,根据一元二次方程的特征,灵活选择解法是解题的关键.2、C【分析】根据折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质、三角形的面积公式逐个判断即可得.【详解】由折叠的性质得:又在中,即,则是等腰直角三角形,结论①正确由结论①可得:,则结论②正确,则结论③正确如图,过点E作由结论①可得:是等腰直角三角形,由勾股定理得:,则结论④错误综上,正确的结论有①②③这3个故选:C.【点睛】本题考查了折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质等知识点,熟记并灵活运用各定理与性质是解题关键.3、C【解析】试题解析:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是.故选C.【点睛】本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4、D【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】时,,在一、二、四象限,在一、三象限,无选项符合.时,,在一、三、四象限,()在二、四象限,只有D符合;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由的取值确定函数所在的象限.5、A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.6、C【分析】解直角三角形求得AB=2,作HM⊥AB于M,证得△ADG≌△MHD,得出AD=HM,设AD=x,则BD=2x,根据三角形面积公式即可得到S△BDHBD•ADx(2x)(x)2,根据二次函数的性质即可求得.【详解】如图,作HM⊥AB于M.∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°.∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH.∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则HM=x,BD=2x,∴S△BDHBD•ADx(2x)(x)2,∴△BDH面积的最大值是.故选:C.【点睛】本题考查了二次函数的性质,解直角三角形,三角形全等的判定和性质以及三角形面积,得到关于x的二次函数是解答本题的关键.7、D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选D.8、B【解析】确定事件包括必然事件和不可能事件,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件;【详解】A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球是不可能事件;B.三角形的内角和为180°是必然事件;C.打开电视机,任选一个频道,屏幕上正在播放广告是随机事件;D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上是随机事件;故选:B.【点睛】此题考查随机事件,解题关键在于掌握其定义9、A【解析】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=∠AOB=30°故选A.10、B【分析】直接利用随机事件以及必然事件的定义分析得出答案.【详解】解:A、明天会下雨,是随机事件,不合题意;B、任意一个三角形,它的内角和等于180°,是必然事件,符合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、打开电视机,正在播放“义乌新闻”,是随机事件,不合题意.故选:B.【点睛】此题主要考查了随机事件以及必然事件,正确掌握相关定义是解题关键.11、C【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y>0,可判断②;由OA=OC,且OA<1,可判断③;由OA=OC,得到方程有一个根为-c,设另一根为x,则=2,解方程可得x=4+c即可判断④;从而可得出答案.【详解】由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;∵OA=OC,∴方程有一个根为-c,设另一根为x.∵对称轴为直线x=2,∴=2,解得:x=4+c.故④正确;综上可知正确的结论有三个.故选C.【点睛】本题考查了二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.12、D【分析】根据函数图象上的点的坐标特征可以知道,经过原点的函数图象,点(0,0)一定在函数的解析式上;反之,点(0,0)一定不在函数的解析式上.【详解】解:A、当x=0时,y=0,即该函数图象一定经过原点(0,0).故本选项错误;B、当x=0时,y=0,即该函数图象一定经过原点(0,0).故本选项错误;C、当x=0时,y=0,即该函数图象一定经过原点(0,0).故本选项错误;D、当x=0时,原方程无解,即该函数图象一定不经过原点(0,0).故本选项正确.故选:D.【点睛】本题考查了函数的图象,熟悉正比例函数,二次函数和反比例函数图象的特点是解题关键.二、填空题(每题4分,共24分)13、2:1.【解析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.14、【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案为.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.15、1【分析】连接AC,证明△ADC≌△BDE,则AC=BE,在Rt△ABC中,利用勾股定理可求解问题.【详解】连接AC,根据等边三角形的性质可知AD=BD,ED=CD,∠ADB=∠EDC=60°.∴∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴AC=BE.∵∠ABC=∠ABD+∠DBC=60°+30°=90°,∴在Rt△ABC中,利用勾股定理可得AC==1.故答案为:1.【点睛】本题主要考查了全等三角形的判定和性质、等边三角形的性质、勾股定理,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.16、-6【分析】易知点A与点C关于原点O中心对称,由平行四边形的性质可知点B和点D关于原点O对称,根据关于原点对称横纵坐标都互为相反数可得点B、点C坐标,求解即可.【详解】解:根据题意得点A与点C关于原点O中心对称,点B和点D关于原点O对称故答案为:【点睛】本题考查了平面直角坐标系中的中心对称,正确理解题意是解题的关键.17、​【分析】采用列举法求概率.【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=1÷6=.故答案为:【点睛】本题考查概率的计算,题目比较简单.18、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.三、解答题(共78分)19、(1)作图见解析(2)作图见解析(3)【分析】(1)利用等腰三角形的性质得出对应点位置,进而得出答案;(2)直接利用旋转的性质得出对应点位置,进而得出答案.【详解】(1)如图所示:△ABC即为所求;(2)如图所示:△DFE,即为所求;(3)CF=.【点睛】本题考查了应用设计与作图以及等腰三角形的性质和勾股定理等知识,根据题意得出对应点位置是解题的关键.20、(1);(2)时,有最大值【分析】(1)根据题意三个区域面积直接求与之间的函数表达式,并根据表示自变量的取值范围即可;(2)由题意对与之间的函数表达式进行配方,即可求的最大值.【详解】解:(1)假设为,由题意三个区域面积相等可得,区域1=区域2,面积法,得,由总长为120,故,得.所以,面积(2),所以当时,为最大值.【点睛】本题考查二次函数的性质在实际生活中的应用.最大值的问题常利用函数的增减性来解答.21、(1)详见解析;(2).【分析】(1)连接OB,欲证是的切线,即要证到∠OBE=90°,而根据等腰三角形的性质可得到.再根据直角三角形的性质可得到,从而得到,从而得到,然后根据切线的判定方法得出结论即可.(2)先根据已知条件求出圆的半径,再根据扇形的面积计算公式计算出扇形OBC的面积,再算出三角形OBC的面积,则阴影部分的面积可求.【详解】(1)证明:如图,连接∵,,∴.∵,,∴在中,.∴∴在中,.∴,即.又∵为圆上一点,∴是圆的切线.(2)解:当时,.∵为圆的直径,∴.又∵,∴.在中,,即,解得.∴,∴【点睛】本题考查了切线的判定方法和弓形面积的计算方法,正确作出辅助线是解题的关键.22、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系数法求解即可;(2)作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,求出直线AD的解析式,设F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面积,然后利用二次函数的性质求解即可;(3)分AP为对角线和AM为对角线两种情况求解即可.【详解】解:(1)∵抛物线x轴相交于点A(-1,0),B(3,0),∴设该抛物线对应的二次函数关系式为y=a(x+1)(x-3),∵点D(2,3)在抛物线上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+2x+3;(2)如图1,作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,设直线AD为y=kx+b,∵A(-1,0),D(2,3),∴,∴,∴直线AD为y=x+1.设点F的横坐标为t,则F(t,-t2+2t+3),M(t,t+1),∵S△FAD=S△AMF+S△DMF=MF(Dx-Ax)=×3(-t2+2t+3-t-1)=×3(-t2+t+2)=-(t-)2+,∴即当t=时,S△FAD最大,∵当x=时,y=-()2+2×+3=,∴F(,);(3)∵y=-x2+2x+3=-(x-1)2+4,∴顶点M(1,4).当AP为对角线时,如图2,设抛物线对称轴交x轴于点R,作PS⊥MR,∵∠PMS+∠AMR=90°,∠MAR+∠AMR=90°,∴∠PMA=∠MAR,∵∠PSM=∠ARM=90°,∴△PMS∽△MAR,∴,∴,∴MS=,∴OP=RS=4+=,∴n=;延长QA交y轴于T,∵PM∥AQ,∴∠MPO=∠OAM,∵∠MPS+∠MPO=90°,∠OAT+∠OAM=90°,∴∠MPS=∠OAT.又∵PS=OA=1,∠PSM=∠AOT=90°,∴△PSM≌△AOT,∴AT=PM=AQ,OT=MS=.∵AM⊥AQ,∴T和Q关于AM对称,∴T(0,-);当AQ为对角线时,如图3,过A作SR⊥x轴,作PS⊥SR于S,作MR⊥SR于R,∵∠RAM+∠SAP=90°,∠SAP+∠SPA=90°,∴∠RAM=∠SPA,∵∠PSA=∠ARM=90°,∴△PSA∽△ARM,∴,∴,∴AS=,∴OP=,∴n=-;延长QM交y轴于T,∵QM∥AP,∴∠APT=∠MTP,∵∠OAP+∠APT=90°,∠GMT+∠MTP=90°,∴∠OAP=∠GMT.又∵GM=OA=1,∠AOP=∠MGT=90°,∴△OAP≌△GMT,∴MT=AP=MQ,GT=OP=.∵AM⊥TQ,∴T和Q关于AM对称,∵OT=4+=,∴T(0,).综上可知,n=,T(0,-)或n=-,T(0,).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,割补法求图形的面积,利用二次函数求最值,相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质,以及分类讨论的数学思想,用到的知识点较多,难度较大,树中考压轴题.23、(1)y=x﹣6;(2)△AOB的面积为6;(3)由图象知,0<x<2或x>1.【分析】(1)先把点A的坐标代入反比例函数表达式,从而的反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可;

(2)根据三角形的面积公式计算即可;(3)观察函数图象即可求出不等式的解集.【详解】(1)把A(2,﹣1)的坐标代入,得,∴1﹣2m=﹣8,反比例函数的表达式是y=﹣;把B(n,﹣2)的坐标代入y=﹣得,-2=﹣,解得:n=1,∴B点坐标为(1,﹣2),把A(2,﹣1)、B(1,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论