智能控制大作业-模糊控制_第1页
智能控制大作业-模糊控制_第2页
智能控制大作业-模糊控制_第3页
智能控制大作业-模糊控制_第4页
智能控制大作业-模糊控制_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

智能控制与应用实验报告

模糊控制器设计

实验内容

考虑一个单连杆机器人控制系统,其可以描述为:

m10.5mglsin(q)yq

2

其中M0.5kgm为杆的转动惯量,m1kg为杆的质量,iim为杆长,g9.8m/s2,q为杆的角位置,4为杆的角速度,q为杆的角加速度, 为系统

的控制输入。

实验具体要求:

.分别采用fuzzy工具箱设计模糊控制器跟踪期望的角位置信号。

.分析量化因子和比例因子对模糊控制器控制性能的影响。

.分析系统在模糊控制和PID控制作用下的抗干扰能力(加噪声干扰)和抗非线性能力(加死区和饱和特性)。

.为系统设计模糊PID控制器

x1得到系统状态方程为:

对象模型建立

根据公式(1),令状态量x1=q,x2

x2

0.5*mgl*sin(x1)M

X1

I

x1

I

x2

y

由此建立单连杆机器人的模型如图1所示

0.5*mgl

图1单连杆机器人模型

三、模糊控制算法实现及仿真

本次实验设计一个二维模糊控制器,令误差 Eq*q,误差变化

ECE,模糊控制器输出语言变量为Uo

1)三个变量E、EC和U的模糊词集为:

{NB,NM,NS,ZO,PS,PM,PB

模糊论域为:

E和EC{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}

U:{-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}

2)模糊控制规则为:

表1模糊控制规则表

X

NB

NM

NS

ZO

PS

PM

PB

NB

PB

PB

PB

PB

PM

ZO

ZO

NM

PB

PB

PB

PB

PM,

ZO

ZO

NS

PM

PM

PM

PM

ZO

NS

NS

ZO

PM

PM

PS

ZO

NS

NM

NM

PS

PS

PS

ZO

NM

NM

NM

NM

PM

ZO

ZO

NM

NB

NB

NB

NB

PB

ZO

ZO

NM

NB

NB

NB

NB

3)确定E,EC和U的控制表

4)建立模糊控制表

5)建立SIMULINKf型

在Matlab/Simulink中建立单连杆机器人模糊控制系统模型如图 2所示:

统角度跟踪为图3

1

0.8

0.6

0.4

-0.4

-0.6

-0.8

给定阶跃信号,取量化因子Ke5,Kec1,比例因子Ku50,得到系统角

图2单连杆机器人控制系统模型

6)仿真结果

给定正弦参考信号,取量化因子Ke5,Kec1,比例因子Ku

50,得到系

t/s

图3正弦角度跟踪

由图3可知,该模糊控制器能使得单连杆机器人控制系统实现很好的角度跟

d

0.2

0

-0.2

-10

5

10

15

T+十八bM,

3恻旧

inputoutput-

度跟踪为图4

―t— _

input output-

r r

98765432^1

图4阶跃角度跟踪

由图4可知,在该模糊控制器下虽然响应有一点延迟,但还是能够很好的跟踪阶跃角度信号,而且稳态误差非常小。

四、参数对模糊控制器的影响

设计一个模糊控制器除了要有一个较好的模糊控制规则外, 合理的选择

模糊控制器输入变量的量化因子和输出控制量的比例因子也是非常重要的。

量化因子和比例因子的大小及其不同量化因子之间大小的相对关系, 对模糊

控制器的控制性能影响极大。

1)量化因子Ke变化

取Kec=1,Ku=50,Ke分别取2,4,6,8时,观察单连杆机器人跟踪阶跃角

度参考的性能如图5所示:

0

0 5 10

t/s

15

图5Ke变化时系统对阶跃信号的角度跟踪

由仿真结果可知,增大Ke,可加快动态响应,提高稳态精度,但Ke也不能过分增大,过大会造成系统超调甚至发散。

2)量化因子Kec

取Ke=5,Ku=50,Kec分别取,“时,观察单连杆机器人跟踪阶跃角度参

1.4

L

L

input

Kec-0.2

Kec=0.4

Kec-0.6

Kec=0.8

II

l'

r

r

1.2

1

0.8

0.6

0.4

0.2

0

dar/pgna

0

5

t/s

10

15

考的性能如图6所示:

图6Kec变化对阶跃信号的角度跟踪

由仿真结果知,增大Kec,减弱了系统动态响应超调,但使系统的响应速度变慢,同时也降低了系统的稳态精度。

3)比例因子Ku变化

取Ke=5,Kec=1,Ku分别取20,40,60,80时,观察单连杆机器人跟踪阶跃角度参考的性能如图7、图8所示:

input

Ku=20

Ku=40

Ku=60

0 5 10

t/s

15

Ku=80

图7Ku变化时角度跟踪动态响应性能图

1 L 1 1 1 L L

input

Ku=20

Ku=40

Ku=60

-Ku=80

-

-

i1fl

l|

h r r i i r r

r

图8Ku变化时角度跟踪稳态响应性能图

由仿真结果可知,Ku选择过小会使系统动态响应过程变长。增大Ku,相当于减弱了系统阻尼,可加快动态响应,同时提升稳态精度,作用和 Ke

相似,过大可能会导致系统震荡。

但不管以上三种参数如何变化,模糊控制下的单连杆机器人系统的角度跟踪始终存在静差,这与模糊控制中不存在积分项有关。

五、模糊控制和PID控制性能比较

为了比较模糊控制和PID控制器对非线性系统的控制效果,建立如下所

小的系统框图。

图9模糊控制结构图

图10PID控制结构图

选定模糊控制器参数为Ke=5,Kec=1,Ku=50;PID控制器参数为

Kp=100,Ki=50,Kd=30o

1)输入参考信号为阶跃时,两者的角度跟踪响应为:

1.2

1

0.8

a0.6rea0.4

0.20

-0.2

I L

input

fuzzy .

pid

1

। r

-

0 5 10 15

t/s

图11、PID和模糊控制阶跃角度跟踪性能比较

由图11可以看出,对于阶跃信号参考输入,单连杆机器人系统在 PID

控制下作用效果优于模糊控制,主要体现在动态响应时, PID控制器快于模

糊控制器。

2)输入参考信号为正弦时,角度跟踪为:

0 5 10 15

t/s

图12、PID和模糊控制正弦角度跟踪性能比较

5

从图12中可以看出,对于正弦输入参考,PID控制效果反而不如模糊

控制,PID控制较模糊控制下的响应存在较大的滞后。

3)阶跃输入下,反馈加入噪声

1.2

TOC\o"1-5"\h\z

0.2〜 ・

0 ~-

-0.2 [ c

0 5 10 15

t/s

图13噪声干扰对比

在PID和模糊控制参数不变的情况下,加入噪声干扰,由图13可知,

模糊控制抗干扰能力优于PIDo

4)阶跃输入下,控制信号加入非线性因素(死区和饱和)

控制电压输出部分加入的死区和饱和如图 14所示:

图14死区和饱和信号

得到模糊控制和PID控制下,系统角度跟踪信号为图15

1.4

U

np

10

15

t/s

图15非线性干扰下对比

由上图可知,在系统控制输入加入非线性干扰后,模糊控制能够较好地抑制系统非线性因素,而PI控制此时已震荡发散,控制性能严重下降。

六、模糊PID控制器

利用模糊控制器控制单连杆机器人角度跟踪时,由于控制器不存在积分项,稳态响应容易出现静差,因此,可在模糊控制的基础上并联一个积分控制器,消除稳态静差。而当误差较大时,积分器容易出现饱和现象,以致引起超调。为优化积分项,可以将模糊控制与积分器结合,通过误差大小控制积分参数的大小,避免积分溢出,优化系统性能。

模糊积分器的具体规则为:当误差绝对值较大时,为防止超调,Ki取较小值;当误差绝对值中等或较小时,为保证稳态性能,可适当加大Ki值。

由以上分析可知,在上述模糊控制器的基础上,再并联一个模糊积分器,即以固定积分参数值Ki为基准,加入模糊Ki值的变化量Ki,作为新的积分参数。其中,Ki的模糊控制规则表如下所示:

表2Ki规则表

X

NB

NM

NS

ZO

PS

PM

PB

NB

PB

PB

PB

PB

NS

NM

NB

NM

PB

PB

PM

PM

NM

NB

NB

NS

PB

PM

PS

PS

NB

NB

NB

ZO

ZO

ZO

ZO

ZO

ZO

ZO

ZO

PS

NB

NB

NB

PS

PS

PM

PB

PM

NB

NB

NM

PM

PM

PB

PB

PB

NB

NM

NS

PB

PB

PB

PB

加入模糊积分器后的系统控制框图如图 16所示,即使用模糊规则对Ki

参数在线调节:

3

.£ ।

<HS>3・"^ ^

图16模糊积分器及系统控制框图

输入一个阶跃参考信号,得到角度跟踪响应,和单模糊控制以及模糊并

联积分器两种控制方法相比较,得图17和图18:

1.4

1.2

inputfuzzy

pidfuzzy-pid

10

15

t/s

图17角度跟踪动态响应比较

d^ayLArana

1.008

1.006

1.004

1.002

1

0.998

0.996

0.994

0.992

0.99

0.988

inputfuzzy

pidfuzzy-pid

14.7814.814.8214.8414.8614.8814.914.9214.9414.9614.98

t/s

图18角度跟踪稳态响应比较

由图18的稳态响应图可以看出,PID控制和模糊控制器都存在较明显的稳态静差,并联了一个积分器后,出现超调情况,但长时间响应后最终能消除静差。而对并联的积分器做出改善,即加入模糊积分器后,角度跟踪既没有出现超调,也很快地消除了稳态静差。因此并联模糊积分器之后能够很好的改善系统性能。

七、总结

经典PID控制原理和现代控制原理的共同特点是:控制器设计必须建立在被控对象的精确建模上。没有精确的数学模型,控制器的控制效果及精度将受到很大的制约。但在现实生活中,大多数系统具有非线性、时变、大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论