版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于晶体的对称元素第1页,共49页,2022年,5月20日,3点12分,星期五一、对称的概念是宇宙间的普遍现象。是自然科学最普遍和最基本的概念,是建造大自然的密码。对称是指物体或图形中相同部分作有规律的重复。对于晶体外形而言,就是晶面与晶面、晶棱与晶棱、角顶与角顶的有规律重复。第2页,共49页,2022年,5月20日,3点12分,星期五二、晶体的对称1.由于晶体都具有格子状构造,而格子状构造就是质点在三维空间周期重复的体现,因此,所以的晶体都是对称的。2.晶体的对称受格子构造规律的限制。即只有符合格子构造规律的对称才能在晶体上出现,因此,晶体对称又是有限的。3.晶体的对称既然取决于格子构造,因此晶体的对称不仅体现在外形上,也体现在物理性质上(光学、力学、热学、电学性质)。4.是晶体的基本性质之一。5.是晶体科学分类的依据。第3页,共49页,2022年,5月20日,3点12分,星期五三、晶体的对称操作和对称要素
在对晶体的对称研究中,为使晶体上相同部分作有规律重复,必须借助一定的几何要素(点、线、面)进行一定的操作(如反映、旋转、反伸等)才能实现,这些操作称为对称操作(symmetryoperation),在操作中所借助的几何要素,称为对称要素(symmetryelement)。对称面(symmetryplane)对称轴(symmetryaxis)对称中心(centerofsymmetry)倒转轴(rotoinversionaxis)第4页,共49页,2022年,5月20日,3点12分,星期五对称面(P)
对称面是一个假想的平面,亦称镜面。与之相应的对称操作是此平面的反映。由这个平面将图形平分后成互为镜像的两个相等部分,分别相当于物体本身和它的像。对称面必通过晶体的中心。m对称面非对称面第5页,共49页,2022年,5月20日,3点12分,星期五对称操作:对于此平面的反映标志:两部分上对应点的连线是否与对称面垂直等距
垂直并平分晶面
垂直晶棱并通过它的中心
包含晶棱可能出现的位置:数目:0
P
9第6页,共49页,2022年,5月20日,3点12分,星期五对称轴(Ln)定义:通过晶体几何中心的一根假想的直线
对称操作:是围绕此直线的旋转
特征:当图形围绕此直线旋转一定角度后,可使相同部分重复(图形复原)
重复时所旋转的最小角度称基转角()旋转一周重复的次数称为轴次(n)n=360
第7页,共49页,2022年,5月20日,3点12分,星期五二次对称轴(two-foldrotation)(L2)α=360°/2=180°ASymmetricalPattern66180°rotation-toreproduceamotifinasymmetricalpatternMotifElementOperation-thesymbolforatwo-foldrotationfirstoperationstepsecondoperationstep第8页,共49页,2022年,5月20日,3点12分,星期五三次对称轴(Three-foldrotation)(L3)α=360°/3=120°666step1step2step3ASymmetricalPattern120°rotation-toreproduceamotifinasymmetricalpatternOperation-thesymbolforathree-foldrotation第9页,共49页,2022年,5月20日,3点12分,星期五6666666666666662-fold3-fold4-fold6-fold其他的对称轴(没有5-fold和>6-fold的)第10页,共49页,2022年,5月20日,3点12分,星期五A.过一对平行晶面的中心B.过一对晶棱的中心C.相对两角顶的连线D.角顶、晶面中心和棱中点任意两个的连线数目0
L2
60
L3
40
L4
30
L6
1对称轴可能出现的位置为第11页,共49页,2022年,5月20日,3点12分,星期五定义:位于晶体几何中心的一个假想的点对称操作:是对此点的反伸
特点:如果通过此点作任意直线,则在此直线上距对称中心等距离的两端上必定可以找到对应点识别标志:两两成对对对平行同形等大方向相反对称中心(C)所有晶面第12页,共49页,2022年,5月20日,3点12分,星期五旋转反伸轴(Lin)定义:一根过晶体几何中心假想的直线对称操作:围绕此直线的旋转和对此直线上的一个点反伸的复合操作第13页,共49页,2022年,5月20日,3点12分,星期五Li1=CLi2=PLi3=L3+CLi6=L3+PLi4第14页,共49页,2022年,5月20日,3点12分,星期五值得指出的是,除Li4外,其余各种旋转反伸轴都可以用其它简单的对称要素或它们的组合来代替,其间关系如下:Li1=C,Li2=P,Li3=L3+C,Li6=L3+P但一般我们在写晶体的对称要素时,保留Li4和Li6,而其他旋转反伸轴就用简单对称要素代替。这是因为Li4不能被代替,Li6在晶体对称分类中有特殊意义。但是,在晶体模型上找Li4往往是比较困难的,因为容易误认为L2。我们不能用L2代替Li4,就像我们不能用L2代替L4一样。因为L4高于L2,Li4也高于L2。在晶体模型上找对称要素,一定要找出最高的。第15页,共49页,2022年,5月20日,3点12分,星期五第16页,共49页,2022年,5月20日,3点12分,星期五由于晶体是具有格子构造的固体物质,这种质点格子状的分布特点决定了晶体的对称轴只有n=1,2,3,4,6这五种,不可能出现n=5,n>6的情况。为什么呢?1、直观形象的理解:垂直五次及高于六次的对称轴的平面结构不能构成面网,且不能毫无间隙地铺满整个空间,即不能成为晶体结构。晶体对称定律第17页,共49页,2022年,5月20日,3点12分,星期五2.晶体对称定律数学证明方法:内容:只能出现轴次(n)为一次、二次、三次、四次和六次的对称轴,而不可能存在五次及高于六次的对称轴。轴次n的确定:
n=360/a
a+2acosa=macosa=(m-1)/2-2m-12由于平行行列的结点间距相等,m只能取整数m=3,2,1,0,-1 a=0°,60°,90°,120°,180°
n=1,6,4,3,2(但是,在准晶体中可以有5、8、10、12次轴)第18页,共49页,2022年,5月20日,3点12分,星期五1、至少有一端通过晶棱中点的对称轴只能是几次对称轴?2、一对正六边形的平行晶面之中点的连线,可能是几次对称轴的方位?3、在只有一个高次轴的晶体中,能否有与高次轴斜交的P或L2存在?为什么?思考题第19页,共49页,2022年,5月20日,3点12分,星期五四、对称要素的组合◆对称要素组合不是任意的,必须符合对称要素的组合定律;◆当对称要素共存时,也可导出新的对称要素。第20页,共49页,2022年,5月20日,3点12分,星期五对称要素组合定理:定理1:如果有一个L2垂直于Ln,则必有n个L2垂直于Ln,LnL2LnnL2
(任意两个相邻的L2的夹角是Ln基转角的一半)。例如:L4L2L44L2,L3L2L33L2逆定理:如果两个相邻的L2相交,在交点上垂直两个L2方向必会产生一个Ln,其基转角是两个L2夹角的两倍。并导出其他n个在垂直Ln平面内的L2。思考:两个L2相交30°,交点处并垂直L2所在平面会产生什么对称轴?第21页,共49页,2022年,5月20日,3点12分,星期五第22页,共49页,2022年,5月20日,3点12分,星期五定理2:如果一个对称面P垂直于偶次对称轴Ln(偶),交点必为对称中心:
Ln(偶)PLnPC。如L4PL4PC
逆定理:如果有一个偶次对称轴Ln(偶)与对称中心C共存,则过C且垂直于该对称轴必有一对称面P,即
Ln(偶)CLnPC。或,如果有一个对称面P与对称中心C共存,则过C且垂直于P必有一个Ln(偶),即PCLn(偶)PC这一定理说明了L2、P、C三者中任两个可以产生第三者。因为偶次轴包含L2。第23页,共49页,2022年,5月20日,3点12分,星期五定理3:如果有一个对称面P包含对称轴Ln,则必有n个P同时包含Ln,即LnP//LnnP//(相邻的两个P的夹角为Ln基转角的一半);如L3
P//L33P//逆定理:两个对称面P相交,其交线必为一对称轴Ln,其基转角为相邻两对称面夹角的两倍,并导出其他n个包含Ln的P。(定理3与定理1类似)思考:两个对称面相交60°,交线处会产生什么对称轴?第24页,共49页,2022年,5月20日,3点12分,星期五定理4:如果有一个二次轴L2垂直于旋转反伸轴Lin,或有一个对称面P包含Lin,当n为奇数时,必有n个L2垂直Lin或n个P包含Lin:当n为偶数时,必有和n/2个L2垂直Lin或n/2个P包含Lin;
LinL2
LinnL2
或LinP//
LinnP//(n为奇数)LinL2
Linn/2L2
或LinP//Linn/2P//
(n为偶数)
第25页,共49页,2022年,5月20日,3点12分,星期五定理5如果两个对称轴Ln和Lm以δ角斜交时,围绕Ln必有n个共点且对称分布的Lm;同时,围绕Lm必有m个共点且对称分布的Ln:Ln
Lm=nLmmLn。且任二相邻的Ln与Lm之间的交角均等于δ。补充第26页,共49页,2022年,5月20日,3点12分,星期五有了对称要素组合定理,我们就可以判断一个晶体上的对称要素组合形式的正确与否。请大家根据上述对称要素组合定理判断下列对称要素组合形式是否正确:1、L43P2、L22P3、L32L24、3L25、L3PC
6、L6PC
怎么样?你的成绩如何?×应该为L44P,根据组合定理3,4个P包含L4√根据组合定理3,2个P包含L2×应该为L33L2,根据组合定理1,3个L2垂直L3√其中一个L2直立,另外两个L2垂直这个直立的L2×应该为L33P,因为L3不是偶次轴,所以不能产生C√P垂直L6,L6是偶次轴,所以产生C对称要素组合测试第27页,共49页,2022年,5月20日,3点12分,星期五五、32个对称型(点群)及其推导各种晶体的对称程度有很大的差别,主要表现在它们所具有的对称要素的种类、轴次和数目上。晶体形态中,全部对称要素的组合,称为该晶体形态的对称型或点群。一般来说,当强调对称要素时称对称型,强调对称操作时称点群。经过数学推导,证明对称型只有32种。我们将属于同一对称型的所有晶体,归为一类,称为晶类。晶类也只有32个。在32个晶类中,按它们所属的对称型特点划分为七个晶系。再按高次对称轴的有无和高次对称轴的数目,将七个晶系并为三个晶族。第28页,共49页,2022年,5月20日,3点12分,星期五对称型的书写顺序一般是首先写从高到低不同轴次的对称轴或旋转反伸轴,其次写对称面,最后写对称心。但在等轴晶系中,不论一个对称型中有无大于3次的对称轴,3次对称轴L3应当始终放在第2位。第29页,共49页,2022年,5月20日,3点12分,星期五请同学们自己分析一下课本第34页“图4-14常见对称型中对称要素在晶体上的空间配置”各个图的对称型如第30页,共49页,2022年,5月20日,3点12分,星期五第31页,共49页,2022年,5月20日,3点12分,星期五第32页,共49页,2022年,5月20日,3点12分,星期五A类对称型(高次轴不多于一个)的推导:A类对称型共有27种,根据对称要素对其推导1)对称轴Ln单独存在(原始式对称型
),可能的对称型为L1;L2;L3;L4;L6
。2)对称轴与对称轴的组合(轴式对称型)
。在这里我们只考虑Ln与垂直它的L2的组合。根据上节所述对称要素组合规律LnL2
→LnnL2
,可能的对称型为:(L1L2=L2);L22L2=3L2;L33L2;L44L2;L66L2
如果L2与Ln斜交有可能出现多于一个的高次轴,这时就不属于A类对称型了。第33页,共49页,2022年,5月20日,3点12分,星期五3)对称轴Ln与垂直它的对称面P的组合(中心式对称型)
。考虑到组合规律Ln(偶)P⊥→Ln(偶)PC,则可能的对称型为L2PC;L4PC;L6PC。4)对称轴Ln与包含它的对称面的组合(平面式对称型)。根据组合规律Ln
P∥→LnnP,可能的对称型为:(L1P=P)L22P;L33P;L44P;L66P。
第34页,共49页,2022年,5月20日,3点12分,星期五?5)对称轴Ln与垂直它的对称面以及包含它的对称面的组合(轴面式对称型
)。垂直Ln的P与包含Ln的P的交线必为垂直Ln的L2,即LnP⊥P∥=LnP⊥P∥L2⊥=LnnL2(n+1)P(C)(C只在有偶次轴垂直P的情况下产生),可能的对称型为:(L1L22P=L22P);L22L23PC=3L23PC;(L33L24P=Li63L23P);L44L25PC;L66L27PC。第35页,共49页,2022年,5月20日,3点12分,星期五6)旋转反伸轴单独存在(倒转原始式对称型)。可能的对称型为:Li1=C;Li2=P;Li3=L3C;;Li6=L3P。7)旋转反伸轴Lin与垂直它的L2(或包含它的P)的组合(倒转轴面式对称型
)。根据组合规律,当n为奇数时LinnL2⊥nP∥,可能的对称型为:(Li1L2P=L2PC);Li33L23P=L33L23PC;当n为偶数时Lin(n/2)L2⊥(n/2)P∥
,可能的对称型为:(Li2L2P=L22P);Li42L22P;Li63L23P=L33L24P。
第36页,共49页,2022年,5月20日,3点12分,星期五例:如果晶体中有一个L4,同时又有一个L2垂直于它和一个对称面垂直它,则L4L2⊥
→L44L2(组合定律1),L4
P⊥→L4PC(组合定律2),因为垂直L4的P与L2是包含关系,所以:L2
P∥→L22P(组合定律3),这两个P中,有一个是垂直L4包含L2的,而另一个是包含L4垂直L2,这个包含L4的P以及垂直L4的P与L4组合(根据推导5):LnP⊥P∥=LnP⊥P∥L2⊥
=LnnL2(n+1)PC,最后产生对称型L44L25PC,金红石就是这种对称型。第37页,共49页,2022年,5月20日,3点12分,星期五7个组合类型中共导出35个对称型,其中重复的有8个,故实际导出的A类对称型共27种。
。请同学们将表中空格的内容填上,空格中的内容与表中其他内容是重复的。LnLnnL2LnCLnPCLnnPLnnL2(n+1)P(C)LinLinnL2nPLinn/2L2n/2PL1Li1=
CL23L2L2PCL22P3L2
3PCLi2=
PL3L33L2L33PLi3=L3
CL33L23PCL4L44L2L4PCL44PL44L25PCLi4Li42L22PL6L66L2L6PCL66PL66L27PCLi6=L3PLi63L23P=L33L24P第38页,共49页,2022年,5月20日,3点12分,星期五还有5个是B类(高次轴多于一个)对称型,不要求推导。此外还有3L44L36L29PC,3L24L33PC,3Li44L36P第39页,共49页,2022年,5月20日,3点12分,星期五对称型符号
习惯符号按一定的顺序表示出晶体所有对称要素的符号
mLnmPC(n-对称轴轴次,从高到低排列,m-对称轴或对成面的数目)国际符号(反映对称要素及其在空间的取向)第40页,共49页,2022年,5月20日,3点12分,星期五
n-单独一个对称轴Ln-单独一个LinN/m-Ln垂直它的P的组合N22或N2-Ln和垂直它的L2的组合(N=1时,1省略)Nmm-Ln和包含它的P的组合(N=1时,1省略,N=2时,特写为mm2)N2m-Lin和包含它的P以及垂直它的L2的组合N/mmm-Ln和包含它的P以及垂直它的P的组合X3Y或X3-第二位上为3者表示4L3说明第41页,共49页,2022年,5月20日,3点12分,星期五六、晶体的对称分类32晶类高、中、低级晶族7大晶系属于同一对称型的晶体高次轴的有无及多少轴次的高低及数目第42页,共49页,2022年,5月20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供暖行业课件教学课件
- 脑血吸虫病病例分析
- 库欣病诊治专家共识
- 2023年香料香精资金筹措计划书
- 踩点点课件教学课件
- 施工单位安全员述职报告
- 期末考前安全教育主题班会
- 安防员个人述职报告
- 肛肠科一病一品汇报
- 猜猜他是谁教案及反思
- 预支款项协议书
- 完整版抖音运营推广方案课件
- 公司以PPP模式实施专项项目可行性专题研究报告可研模板
- 中国邮政社招笔试题库
- 《经济法基础》全套教学课件
- 全屋定制柜子售后合同模板
- 2024-2030年中国养生行业市场深度调研及前景趋势与投资研究报告
- 江西省内装修合同范本
- 医疗检验科协作医院协议书
- 《湖南省建设工程计价办法》《湖南省建设工程消耗量标准》交底宣贯课件-2020湖南省房屋建筑与装饰工程消耗量标准交底
- 养老机构服务质量评价指标体系的构建
评论
0/150
提交评论