版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的大小关系为()A. B. C. D.2.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为()A. B. C. D.3.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.4.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知集合,,则集合子集的个数为()A. B. C. D.6.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A. B. C. D.7.若,,则的值为()A. B. C. D.8.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.9.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.10.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为()A. B. C. D.11.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.212.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A. B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数x,y满足(2x-y)2+4y14.函数在区间上的值域为______.15.已知,是互相垂直的单位向量,若与λ的夹角为60°,则实数λ的值是__.16.已知抛物线的焦点为,斜率为的直线过且与抛物线交于两点,为坐标原点,若在第一象限,那么_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.18.(12分)已知函数和的图象关于原点对称,且.(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围.19.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.20.(12分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.21.(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.22.(10分)已知函数(1)求f(x)的单调递增区间;(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.【题目详解】由题知,,则.故选:A.【答案点睛】本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题..2、B【答案解析】
分别取、的中点、,连接、、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案.【题目详解】如下图所示,分别取、的中点、,连接、、,由于是以为直角等腰直角三角形,为的中点,,,且、分别为、的中点,所以,,所以,,所以二面角的平面角为,,则,且,所以,,,是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点,分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,由图形可知,,在中,,,所以,,所以,球的半径为,因此,球的表面积为.故选:B.【答案点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题.3、A【答案解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【题目详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【答案点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.4、A【答案解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【题目详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【答案点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.5、B【答案解析】
首先求出,再根据含有个元素的集合有个子集,计算可得.【题目详解】解:,,,子集的个数为.故选:.【答案点睛】考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.6、B【答案解析】
基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【题目详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【答案点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.7、A【答案解析】
取,得到,取,则,计算得到答案.【题目详解】取,得到;取,则.故.故选:.【答案点睛】本题考查了二项式定理的应用,取和是解题的关键.8、B【答案解析】
因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【题目详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【答案点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.9、A【答案解析】
观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【题目详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【答案点睛】本题通过三视图考察空间识图的能力,属于基础题。10、B【答案解析】
计算求半径为,再计算球体积和圆锥体积,计算得到答案.【题目详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【答案点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.11、B【答案解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【题目详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【答案点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.12、B【答案解析】
由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【题目详解】由题意,直角梯形中,,,,,可求得,所以·∵点在线段上,设,则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【答案点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.二、填空题:本题共4小题,每小题5分,共20分。13、2【答案解析】
直接利用柯西不等式得到答案.【题目详解】根据柯西不等式:2x-y2+4y当2x-y=2y,即x=328故答案为:2.【答案点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.14、【答案解析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【题目详解】,,则,.故答案为:.【答案点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.15、【答案解析】
根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【题目详解】解:由题意,设(1,0),(0,1),则(,﹣1),λ(1,λ);又夹角为60°,∴()•(λ)λ=2cos60°,即λ,解得λ.【答案点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题.16、2【答案解析】
如图所示,先证明,再利用抛物线的定义和相似得到.【题目详解】由题得,.因为.所以,过点A、B分别作准线的垂线,垂足分别为M,N,过点B作于点E,设|BF|=m,|AF|=n,则|BN|=m,|AM|=n,所以|AE|=n-m,因为,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案为:2【答案点睛】本题主要考查直线和抛物线的位置关系,考查抛物线的定义,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(i)详见解析;(ii)会超过;详见解析【答案解析】
(1)利用组合进行计算以及概率表示,可得结果.(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.【题目详解】(1)设ξ为选取的3天中空气质量为优的天数,则P(ξ=2),P(ξ=3),则这3天中空气质量至少有2天为优的概率为;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故该企业9月的经济损失的数学期望为30E(X),即30E(X)=9060元,设7月、8月每天因空气质量造成的经济损失为Y元,可得:,,,E(Y)=02201480320(元),所以该企业7月、8月这两个月因空气质量造成经济损失总额的数学期望为320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月这三个月因空气质量造成经济损失总额的数学期望会超过2.88万元.【答案点睛】本题考查概率中的分布列以及数学期望,属基础题。18、(1)(2)【答案解析】试题分析:(1)由函数和的图象关于原点对称可得的表达式,再去掉绝对值即可解不等式;(2)对,不等式成立等价于,去绝对值得不等式组,即可求得实数的取值范围.试题解析:(1)∵函数和的图象关于原点对称,∴,∴原不等式可化为,即或,解得不等式的解集为;(2)不等式可化为:,即,即,则只需,解得,的取值范围是.19、(1)答案见解析(2)【答案解析】
(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【题目详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),,设(),恒大于零.在上单调递增.又,,,∴存在唯一,使,且时,时,①当时,恒成立,在单调递增,无极值,不合题意.②当时,可得当时,,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.③当时,可得当时,,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.【答案点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.20、(1)见解析(2)见解析【答案解析】
(1)连结OE,证明VA∥OE得到答案.(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.【题目详解】(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.【答案点睛】本题考查了线面平行,面面垂直,意在考查学生的推断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人提供艺术指导服务2024年度合同2篇
- 二零二五版股票质押担保合同范本编制与执行指南3篇
- 二零二五年度股东持股合同中违约责任条款3篇
- 2025年度酒店餐饮项目资金引进投资顾问合同3篇
- 二零二五年度马铃薯种植基地基础设施建设与租赁合同4篇
- 二零二五年度游戏剧情设计劳动合同2篇
- 二零二五年度石油管道巡检临时驾驶员用工合同4篇
- 二零二五年度耐寒草籽草坪供应合同3篇
- 2025年度数码产品寄售合作合同标准版4篇
- 二零二五年度砂石料质量检验与索赔合同3篇
- 公路工程施工现场安全检查手册
- 公司组织架构图(可编辑模版)
- 1汽轮机跳闸事故演练
- 陕西省铜川市各县区乡镇行政村村庄村名居民村民委员会明细
- 礼品(礼金)上交登记台账
- 北师大版七年级数学上册教案(全册完整版)教学设计含教学反思
- 2023高中物理步步高大一轮 第五章 第1讲 万有引力定律及应用
- 青少年软件编程(Scratch)练习题及答案
- 浙江省公务员考试面试真题答案及解析精选
- 系统性红斑狼疮-第九版内科学
- 全统定额工程量计算规则1994
评论
0/150
提交评论