一维随机变量和分布课件_第1页
一维随机变量和分布课件_第2页
一维随机变量和分布课件_第3页
一维随机变量和分布课件_第4页
一维随机变量和分布课件_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章一维随机变量及其分布一、随机变量二、随机变量的分布函数三、离散型的概率分布律四、连续型随机变量及其概率密度五、随机变量的函数的分布第二章一维随机变量及其分布一、随机变量二、随机变量的分布

上一章用集合来表示事件和事件的运算,实现了第一步抽象化、符号化的工作。但在这里,集合中的元素对应的还是随机试验中具体出现的结果。本章首先要作的就是把这些结果和实数对应,相应的变量即为随机变量,则事件对应着相应的数集,进一步的,我们可以把已有的数学工具应用到概率分布问题的研究,从而实现研究方法的函数化,这有利于更好、更深入地揭示随机现象的规律性。看下面简单的例子例:抛掷一枚硬币的两个结果:{正面,反面},也可以用数字表示:{1,0},这时对应的关系可以反映为一个变量上一章用集合来表示事件和事件的运算,实现了一、随机变量的概念1随机变量及其分布定义设E是一随机试验,是它的样本空间,若对中的每一个,都有唯一的实数与之对应,则称为(随机试验E的)随机变量。随机变量一般用X,Y,Z,或小写希腊字母,,表示。即(映射)问:定义域和值域分别是什么?一、随机变量的概念1随机变量及其分布定义设E是一随离散型连续型取值为有限个和至多可列个的随机变量.可以取区间内一切值的随机变量.例1(1)随机地掷一颗骰子,ω表示所有的样本点,X(ω):12

3456(2)某人买彩票直至买中为止,ω表示买入次数,则ω:买1次买2次......买n次......X(ω):12......n......(3)记录下午两点到晚上12点电话呼入时间,则ω:呼入时间X(ω):[0,10]ω:离散型连续型取值为有限个和至多可列个的随机变量.可以取区间内

引入随机变量后,用随机变量的等式或不等式表达随机事件。(3)X(ω)表示记录下午两点到晚上12点电话呼入时间对应的随机变量,讨论例1(1)X(ω)表示随机地掷一颗骰子掷出的点数则表示事件,进一步地讨论它们的概率。(2)X(ω)某人买彩票直至买中为止的次数,讨论引入随机变量后,用随机变量的等式或不等式表达随机事件。(3定义了一个x的实值函数,称为随机变量X的分布函数,记为F(x),即定义设X为随机变量,对每个实数x,随机事件的概率注:1.分布函数对应的集合可以表示随机变量其它等式或不等式表示的集合;2.分布函数给出了研究统计规律性统一的基本概念。它完整地描述了随机变量的统计规律性(见下页).二、随机变量的分布函数定义了一个x的实值函数,称为随机变量X的分布函数,记为F(]ab]](]

若把X看作数轴上的坐标,则表示X落在区间上的概率,则利用分布函数可以计算而(]ab]](]若把X看作数轴上的坐标,则2.且分布函数的性质单调不减,即3.

右连续,即注:后两条性质做直观理解即可!2.且分布函数的性质单调不减,即3.右连续即求的分布函数,并求

例1:设随机变量的有分布为-123即求的分布函数,并求例1:设随机变量的有分布为-123-101231-101231xy图像:-1012解:由分布函数的性质,我们有得解得试求常数A,B.例2设随机变量X

的分布函数为解:由分布函数的性质,我们有得解得试求常数A,B.例2设描述离散型随机变量的概率特性常用它的概率分布或称分布律,即概率分布的性质

非负性

规范性2离散型随机变量

定义若随机变量X的可能取值是有限多个或

无穷可列多个,则称X为离散型随机变量.一、离散型随机变量的分布律描述离散型随机变量的概率特性常用它的概率概率分布的性质非(1)0–1

分布

二、常见的离散型随机变量的分布应用场合凡是试验的目的只考虑两个可能的结果,常用0–1分布描述,如考试是否及格、产品是否格、人口性别统计、系统是否正常、电力消耗是否超负荷等等.--简单且普便或写成X=k

10P

p1–p0<

p<

1分布律:(1)0–1分布二、常见的离散型随机变量的分布(2)二项分布

回顾:n

重Bernoulli

试验中,每次试验感兴趣的事件A在n

次试验中发生的k次的概率?称

X服从参数为n,p

的二项分布,记作0–1

分布是n=1

的二项分布若P(A)=

p,则给出随机变量X,X为事件

A在

n

次试验中发生的次数。(2)二项分布回顾:n重Bernoulli试验中,例2一大批产品的次品率为0.1,现从中取出15件.试求下列事件的概率:

B={取出的15件产品中恰有2件次品}

C={取出的15件产品中至少有2件次品}

解:由于从一大批产品中取15件产品,故可近似看作是15重Bernoulli试验.所以,X表示“抽取的产品中次品的个数”,则例2一大批产品的次品率为0.1,现从中取出15件.试

例3:一个完全不懂英语的人去参加英语考试.假设此考试有5个选择题,每题有4重选择,其中只有一个答案正确.试求:他居然能答对3题以上而及格的概率.

解:由于此人完全是瞎懵,所以每一题,每一个答案对于他来说都是一样的,而且他是否正确回答各题也是相互独立的.这样,他答题的过程就是一个Bernoulli试验。

另问:全部答错的概率?0.237例3:一个完全不懂英语的人去参加英语考试.假设此考试有5个(3)Poisson分布或

回顾:的幂级数展开式?或若变量X满足其中是常数,则称

X

服从参数为的Poisson分布,记作例4设随机变量

X

服从参数为λ的Poisson分布,且已知试求(3)Poisson分布或回顾:的幂级数展开式

解:随机变量X

的分布律为得由已知那么解:随机变量X的分布律为得由已知那么3

连续型随机变量及其概率密度引例

考虑某车床加工的零件长度与规定的长度的偏差,通常知道偏差的范围,设其偏差的绝对值最大是a,那么

V

[-a,a].3连续型随机变量及其概率密度引例

定义设X

是一随机变量,若存在一个非负可积函数

f(x),使得其中F(x)是它的分布函数.则称X

是连续型随机变量,f(x)是它的概率密度函数,简称为密度函数或概率密度.一、连续型随机变量的概念定义设X是一随机变量,若存在一个非负可积函数fxf(x)xF(x)分布函数

F(x)

与密度函数

f(x)的几何意义:建立坐标系,给出f(x)的图像。xf(x)xF(x)分布函数F(x)与密度函数ff(x)的性质:1、2、

我们常利用此性质检验一个函数能否作为连续性随机变量的密度函数,或求其中的未知参数。3、在

f(x)

的连续点处,f(x)

描述了X在

x

点分布函数值的变化率。4、对任意的a<b,有f(x)的性质:1、2、我们常利用此性质检验一个函数注意:

对于连续型随机变量X

,密度函数的积分才对应着概率值,故有P(X=a)=0,这里

a

可以是随机变量

X

的一个可能的取值。命题

连续型随机变量取任一常数的概率为零,则要注意不可能事件的概念与不同。注意:对于连续型随机变量X,密度函数的积分才命题连那么,对于连续型随机变量Xbxf(x)a那么,对于连续型随机变量Xbxf(x)axf(x)axf(x)a例1设随机变量具有概率密度函数试确定常数A,以及的分布函数.

解由知A=3,即而的分布函数为例1设随机变量具有概率密度函数解由知A=3,即(1)均匀分布则称

X

服从区间(a,b)上的均匀分布,记作若X的密度函数为X

的分布函数为二、常见的连续性随机变量的分布(1)均匀分布则称X服从区间(a,b)上的均匀分均匀分布的密度函数和分布函数图像:abxF(x)01密度函数:分布函数:xab0f(x)均匀分布的密度函数和分布函数图像:abxF(x)01密度函(2)指数分布若X

的密度函数为则称X

服从

参数为的指数分布。记作X

的分布函数为>0为常数(2)指数分布若X的密度函数为则称X服从参数为一般地,若X的密度函数为则称X服从参数为,2的正态分布为常数,记作(3)正态分布首先看标准正态分布一般地,若X的密度函数为则称X服从参数为,一维随机变量和分布课件f(x)的性质:

图形关于直线x=

对称:f(+x)=f(-x)在x=

时,f(x)取得最大值在x=±

时,曲线

y=f(x)在对应的点处有拐点曲线

y=f(x)以x轴为渐近线曲线

y=f(x)的图形呈单峰状f(x)的性质:图形关于直线x=对称:fxf(x)0若1<2,则,前者取附近值的概率更大.x=1所对应的拐点

xf(x)0若1<2,则,前者取附近值的概率更大.应用场合

若随机变量X受到众多相互独立的随机因素的影响,而每一个别因素的影响都是微小的,且这些影响可以叠加,则X服从正态分布.海洋波浪的高度;金属线的抗拉强度;热噪声电流强度;学生们的考试成绩;可用正态变量描述的实例非常之多:各种测量的误差;人的生理特征;工厂产品的尺寸;农作物的收获量;应用场合若随机变量X受到众多相互独立的随机因海洋波浪密度函数的验证可以验证密度函数的验证可以验证一维随机变量和分布课件标准正态分布N(0,1)

分布函数为回忆:怎么计算?标准正态分布N(0,1)分布函数为回忆:怎么计算?图形图形-xx-xx对一般的正态分布

N(,2),其分布函数

作变量代换对一般的正态分布N(,2),其分布函数作变量代例5设X~N(1,4),求P(0X1.6)解附表例5设X~N(1,4),求P(0X即由随机变量X来考察Y=g(X)的概率特性。4随机变量函数的分布引例已知

X

的概率分布为Xp

-1012Y=2X–1,那么Y的分布律为Yp-3-113即由随机变量X来考察Y=g(X)的概率特性。4设随机变量

X

的分布律为由已知函数Y=g(X)可求出随机变量Y的所有可能取值,则Y的概率分布为一、离散型随机变量函数的分布设随机变量X的分布律为由已知函数Y=g(X)例1

已知

X

的概率分布为X

pk-1012求Y=X

2

的分布律.解Ypi1014Ypi014例1已知X的概率分布为Xpk-10已知随机变量X的密度函数f(x)(或分布函数)求Y=g(X)

的密度函数或分布函数.基本方法的步骤:

二、连续性随机变量函数的分布先看例子已知随机变量X的密度函数f(x)(或分布函数)基解:(1)先求Y=X-4的分布函数

FY(y):设随机变量X

具有概率密度:试求Y=X-4

的概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论