2021-2022学年安徽省合肥市某学校数学高职单招模拟考试(含答案)_第1页
2021-2022学年安徽省合肥市某学校数学高职单招模拟考试(含答案)_第2页
2021-2022学年安徽省合肥市某学校数学高职单招模拟考试(含答案)_第3页
2021-2022学年安徽省合肥市某学校数学高职单招模拟考试(含答案)_第4页
2021-2022学年安徽省合肥市某学校数学高职单招模拟考试(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年安徽省合肥市某学校数学高职单招模拟考试(含答案)一、单选题(20题)1.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}2.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.23.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-84.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)5.若logmn=-1,则m+3n的最小值是()A.

B.

C.2

D.5/2

6.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.67.如图,在长方体ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A—BB1D1D的体积为()cm3.A.5B.6C.7D.88.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5

B.2/5

C.

D.

9.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)

B.y=2sin(2x-π/3)

C.y=2sin(x+π/6)

D.y=2sin(x+π/3)

10.一元二次不等式x2+x-

6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)11.已知a是函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.212.设集合,,则()A.A,B的都是有限集B.A,B的都是无限集C.A是有限集,B是无限集D.B是有限集,A是无限集13.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)14.己知,则这样的集合P有()个数A.3B.2C.4D.515.若是两条不重合的直线表示平面,给出下列正确的个数()(1)(2)(3)(4)A.lB.2C.3D.416.如下图所示,转盘上有8个面积相等的扇形,转动转盘,则转盘停止转动时,指针落在阴影部分的概率为()A.1/8B.1/4C.3/8D.1/217.A.-1B.-4C.4D.218.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2

B.f(x)=x2+1

C.f(x)=x3

D.f(x)-2-x

19.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0

B.对任意x∈R,都有x2<0

C.存在x0∈R,使得x02≥0

D.不存在x∈R,使得x2<0

20.椭圆x2/4+y2/2=1的焦距()A.4

B.2

C.2

D.2

二、填空题(10题)21.22.如图所示的程序框图中,输出的S的值为______.23.当0<x<1时,x(1-x)取最大值时的值为________.24.等比数列中,a2=3,a6=6,则a4=_____.25.26.27.已知点A(5,-3)B(1,5),则点P的坐标是_____.28.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.29.30.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.三、计算题(10题)31.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2.32.解不等式4<|1-3x|<733.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。34.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。35.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.36.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.37.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.38.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.39.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。40.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.四、证明题(5题)41.42.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.43.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.44.己知sin(θ+α)=sin(θ+β),求证:45.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.五、综合题(5题)46.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.47.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.48.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)49.50.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.六、解答题(5题)51.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.52.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.53.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.54.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.55.

参考答案

1.D一元二次不等式方程的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

2.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

3.C

4.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).

5.B对数性质及基本不等式求最值.由㏒mn=-1,得m-1==n,则mn=1.由于m>0,n>0,∴m+3n≥2.

6.B抛物线方程为y2=2px=2*4x,焦点坐标为(p/2,0)=(2,0),准线方程为x=-p/2=-2,则焦点到准线的距离为p/2-(-p/2)=p=4。

7.B四棱锥的体积公式∵长方体底面ABCD是正方形,∴△ABD中BD=3cm,BD边上的高是3/2cm,∴四棱锥A-BB1DD1的体积为去1/3×3×2×3/2=6

8.D直线与椭圆的性质,离心率公式.直线l:x-2y+2=0与x轴的交点F1(-2,0),与y轴的交点B(0,1),由于椭圆的左焦点为F1,上顶点为B,则c=2,b=1,∴a=

9.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)

10.A

11.D导数在研究函数中的应用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,则x1=-2,x2=2.当x∈(-∞,-2),(2,+∞)时,f(x)>0,则f(x)单调递增;当x∈(―2,2)时,f(x)<0,则f(x)单调递减,∴f(x)的极小值点为a=2.

12.B由于等腰三角形和(0,1)之间的实数均有无限个,因此A,B均为无限集。

13.C函数的定义.x+1>0所以.x>-1.

14.C

15.B若两条不重合的直线表示平面,由直线和平面之间的关系可知(1)、(4)正确。

16.D本题考查几何概型概率的计算。阴影部分的面积为圆面的一半,由几何概型可知P=1/2。

17.C

18.A函数的奇偶性,单调性.因为:y=x2在(-∞,0)上是单调递减的,故y=1/x2在(-∞,0)上是单调递增的,又y=1/x2为偶函数,故A对;y=x2+1在(-∞,0)上是单调递减的,故B错;y=x3为奇函数,故C错;y=2-x为非奇非偶函数,故D错.

19.A命题的定义.根据否定命题的定义可知命题的否定为:存在x0∈R使得x02<0,

20.D椭圆的定义.由a2=b2+c2,c2=4-2=2,所以c=,椭圆焦距长度为2c=221.-1/222.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/1223.1/2均值不等式求最值∵0<

24.,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.25.4526.1227.(2,3),设P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).28.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.29.1

30.,以直线b和A作平面,作P在该平面上的垂点D,作DC垂直b于C,则有PD=,BD=4,DC=2,因此PC=,(PC为垂直于b的直线).

31.

32.

33.

34.35.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

36.

37.

38.

39.

40.

41.42.证明:考虑对数函数y=lgx的限制知:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx

(0,1)∴lgx-2<0A-B∴A<B

43.

44.

45.∴PD//平面ACE.46.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为

47.48.

49.50.解:(1)斜率k

=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

51.52.(1)设每吨的成本为w万元,则w=y/x=x/10+90/(x-2)>2-2=4,当且仅当总产量x=30吨时,每吨的成本最低为4万元.(2)设利润为u万元,则w=6x-(x2/10-2x+90)=-x2/10+8x-90=-1/10(x-40)2+70,当总产量x=40吨时,利润最大为70万元.

53.54.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论